
Library Part Two
Version 1.06

m Mobile Shell, Library Part Two, Version 1.06
Written by Lukas Knecht

www.m-shell.net

Document IW-M-LIB2-1.18

c© 2004-2007 infowing AG, 8703 Erlenbach, Switzerland

The information contained herein is the property of infowing AG and shall neither be reproduced
in whole or in part without prior written approval from infowing AG. All rights are reserved,
whether the whole or part of the material is concerned, specifically those of translation, reprint-
ing, reuse of illustration, broadcasting, reproduction by photocopying machine or similar means
and storage in data banks. infowing AG reserves the right to make changes, without notice, to the
contents contained herein and shall not be responsible for any damages (including consequential)
caused by reliance on the material as presented.

Typeset in Switzerland.

c© 2007 infowing AG Contents

Contents

1 Introduction 3

2 Library 5
2.1 Module agenda: Agenda Database 5
2.2 Module app: Application Control 11
2.3 Module bigint: Arbitrarily Large Integers 17
2.4 Module bt: Bluetooth Communication 21
2.5 Module cam: Onboard Camera 34
2.6 Module mms: Multimedia Messages 39
2.7 Module net: TCP/IP Networking 44
2.8 Module obex: Object Exchange Client 51
2.9 Module phone: Phone Calls 55
2.10 Module proc: m Processes 59
2.11 Module vibra: Vibration Control 65

Index 67

m Mobile Shell Library Part Two Version 1.06 1

Contents c© 2007 infowing AG

2 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG

1. Introduction
This manual describes the additional modules available in Part Two of the m
standard library. Part Two comprises modules which are:

• highly specialized,

• or are not supported on all devices,

• or are potentially harmful to use,

• or provide significant additional value.

m Mobile Shell Library Part Two Version 1.06 3

1. Introduction c© 2007 infowing AG

4 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG

2. Library

2.1 Module agenda: Agenda Database

This module allows to read and manipulate the agenda (calendar and to-do
list) stored on the phone. There are different types of agenda entries, each
type identified by its flag:

• Appointment (agenda.appt flag): an entry starting at a date and time
and ending on the same day, e.g. a team meeting.

• Event (agenda.event flag): an entry starting at a date and ending on
a date, e.g. holidays.

• Anniversary (agenda.anniv flag): an entry occuring at a date, with
an optional base year (e.g. the year of birth).

• To-do list item (agenda.todo flag): an entry with a due date and a
priority. When done, it also gets a done (“crossed out”) date.

The standard calendar application on the phone often does not support all
entry types and attributes.
In the phone’s database, an agenda entry is identified by its id, an integer
number.

Agenda Fields

In m, an agenda entry is represented as an array whose elements are the fields
of the entry. Fields are identified by their (array) keys. m recognizes the
following keys, with the corresponding data type:

m Mobile Shell Library Part Two Version 1.06 5

2. Library c© 2007 infowing AG

Key Meaning Type Used in

a
p
p
t

e
v
e
n
t

a
n
n
i
v

t
o
d
o

alarm Alarm date/time Seconds × × × ×
base Base year Integer ×
done Done date Seconds ×
end End date/time Seconds × × ×
flags Entry flags (see below) Integer × × × ×
loc Location String × × × ×
prio Priority Integer ×
rep Repeat details (see below) Array × × × ×
start Start date/time Seconds × × × ×
text Entry text String × × × ×

Key names are not case sensitive.
All dates and times of an entry are represented as seconds since the start of
year zero in local time (see also module time (Reference, p. 131)). Valid
dates are January 1st, 1980 to December 31st, 2100. The functions of this
module throw ExcValueOutOfRange if a date outside this range is used.
The only exception is the base year (base) of an anniversary entry, which is
simply an integer indicating any year.
The order of fields in the array describing an entry is arbitrary. Arrays re-
turned by functions in this module always start with the two fields text and
flags.

Agenda Entry Flags

The flags field is a bitwise combination of the following values:
• const anniv = 4 Entry is an anniversary.
• const appt = 1 Entry is an appointment.
• const done = 32 To-do entry is done.
• const event = 2 Entry is an event.
• const rep = 16 Entry is repeated.
• const todo = 8 Entry is a to-do list item.
Flags can be used to select entries in agenda.find (p. 10), and they must be

6 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG 2.1. Module agenda: Agenda Database

used to indicate the type of the new entry in agenda.add (p. 9).
For use in agenda.find (p. 10), there is also the value
• const all = 63 All flags combined.

Repetitive Entries

All dated entries can be repetitive: a repetitive entry is automatically repeated
according to its repeat details. For instance, an anniversary is typically re-
peated on the same date every year. Repeating an entry does not duplicate
the entry; deleting or updating a repetitive entry also deletes or updates all its
repetitions.
In m, the repeat details of an entry are represented as an array stored in the
entry’s rep field. m recognizes the following keys of this array, with the
corresponding data type:

Key Meaning Type
end Repeat end date Seconds
interval Repeat interval (days, months, years) Integer
type Repeat type (see below) Integer
when Repeat selection (see below) Array of Integer

If end=null (the default), the entry is repeated forever. The default
interval is 1. type must be one of the following six values:
• const daily = Repeat daily.

Repeat the entry every interval days.

// plan for an 30 minute exercise at 8am
// every three days, starting today
today=86400 * math.trunc(time.get() / 86400);
e=["text":"exercise",

"start":today+8*3600,
"end":today+8*3600+1800,
"flags":agenda.appt,
"rep":["type":agenda.daily, "interval":3]]

• const weekly = Repeat weekly.

Repeat the entry every interval weeks, on the week days indicated by
when. Week days start with zero as Monday; see also time.dayofweek

(Reference, p. 131).

m Mobile Shell Library Part Two Version 1.06 7

2. Library c© 2007 infowing AG

// repeat every week on Tuesday and Friday
e["rep"]=["type":agenda.weekly, "when":[1,4]]

• const monthlydate = Repeat monthly, at given dates.

Repeat the entry every interval months, on the days indicated by when.

// repeat every two months on the 10th and 25th
e["rep"]=["type":agenda.monthlydate,

"interval":2, "when":[10,25]]

• const monthlyday = Repeat monthly, at given days of

weeks.

Repeat the entry every interval months, on the week days in the weeks
indicated by when: when[2*i] indicates the week of the month (1 is the
first, 4 is the fourth, 5 the last), and when[2*i+1] indicates the day of week
(0 is Monday).

// repeat every month on the Tuesday (1) of the 2nd
// week (2), and on the Tuesday (1) of the last week (5)
e["rep"]=["type":agenda.monthlyday, "when":[2,1,5,1]]

• const yearlydate = Repeat yearly, at a given date.

Repeat the entry every interval years, on the date implied by the entry’s
start date. This repeat type is typically used for anniversaries.

// repeat every year
e["rep"]=["type":agenda.yearlydate]

• const yearlyday = Repeat yearly, at a given day of a

week of a month.

Repeat the entry every interval years, on the day indicated by when:
when[0] indicates the month, when[1] the week of the month (1 ist the first,
4 is the fourth, 5 is the last), and when[2] the day of week (0 is Monday).

// repeat yearly, on Sunday (6) of the 1st week in April
e["rep"]=["type":agenda.yearlyday,"when":[4,1,6]]

8 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG 2.1. Module agenda: Agenda Database

agenda.add

• function add(entry)→ Number

Permissions: WriteApp

Add an entry to the agenda database, and return its id. The entry must be
an array with keys from the above tables. The entry type is derived from the
flags array element; if there is no flags element, an agenda.appt entry
is added.

// Add a 30 minute meeting starting in two hours,
// in the CEO’s office
start=time.get()+2*3600;
e=["text":"Group meeting",

"flags":agenda.appt,
"start":start,
"end":start+1800,
"loc":"CEO’s office"];

agenda.add(e)
→ 402653204
// Add an anniversary, repeating every year
e=["text": "Shakespeare’s Birthday",

"flags": agenda.anniv,
"start": time.num("2005-04-23"),
"base": 1564,
"rep": ["type":agenda.yearlydate]];

agenda.add(e)
→ 117440532

agenda.delete

• function delete(id)→ null

Permissions: WriteApp

Delete the contact with the given id.
Throws ErrNotFound if there is no such contact.

// delete the anniversary added in the add example
agenda.delete(117440532)

m Mobile Shell Library Part Two Version 1.06 9

2. Library c© 2007 infowing AG

agenda.find

• function find(start=null, end=null, flags=agenda.appt
| agenda.event | agenda.anniv |
agenda.rep)→ Array

Permissions: ReadApp

Searches the agenda for entries overlapping with the period between start

and end, and with an entry type indicated by flags. The default flags ex-
clude to-do list entries.
start and end must be given in seconds since year zero; start=null indi-
cates the earliest possible start date, end=null the latest possible end date.

// get the number of entries in the agenda
print len(agenda.find(null, null, agenda.all))
→ 53
// print the text and start of today’s entries
today=86400*math.trunc(time.get()/86400);
for id in agenda.find(today,today+86400) do
e=agenda.get(id);
print e["text"], time.str(e["start"], "hh:mm")

end
→ ...

Group meeting 18:40
...

// delete all entries up to now, excluding repetitives
for id in agenda.find(null, time.get(),

agenda.all & ˜agenda.rep)
agenda.delete(id)

end

agenda.get

• function get(id)→ Array

Permissions: ReadApp

Get the fields of the agenda entry with id id.
Throws ErrNotFound if there is no entry with this id.

10 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG 2.2. Module app: Application Control

// get the entry added before
e=agenda.get(402653204);
print e
→ [Group meeting,1,63284611200,63284613000,

CEO’s office]
print time.str(e["start"])
→ 2005-05-17 18:40:00

agenda.set

• function set(id, entry)→ null

Permissions: WriteApp

Updates the entry with id id, updating the fields in array entry. entry must
be an array with keys from the above tables. Fields which are null in the
array are cleared in the entry.

// Change the location of the group meeting
agenda.set(402653204, ["loc":"My office"])
// Set all done entries in the to-do list to "not done"
ids=agenda.find(null, null, agenda.todo | agenda.done);
for id in ids do
agenda.set(id, ["done":null])

end

2.2 Module app: Application Control

This module provides access to the applications installed on the phone: listing
installed applications, opening documents, starting and stopping applications,
and bringing them to the foreground or sending them to the background.
Functions in this module are specific to Symbian OS, and not likely to be
portable to other operating systems.
In Symbian OS, each application has its unique UID (unique identifier),
which is simply an integer number. In the functions of this module, an ap-
plication is identified by its UID or its name (caption). Since the caption is
language and installation dependent, the UID is generally preferrable. Appli-
cation UIDs and captions may also vary between different devices.

m Mobile Shell Library Part Two Version 1.06 11

http://www.symbian.com
http://www.symbian.com

2. Library c© 2007 infowing AG

Since m itself is also an application, the functions in this module can also be
used to bring m to the foreground, send it to background, or simply stop it.
The app.uid (p. 16) constant identifies the m application.

app.find

• function find(name=null)→ Array

Permissions: ReadApp

Searches for applications whose name matches the pattern name. name can
contain the wildcards * and ?. If name=null, searches for all installed appli-
cations.
Returns an array with one element for each application found, each element
being an array with the following keys:

Key Meaning Type
name Application name (caption) String
file Application DLL file name String
uid Application UID Integer

// search for the mShell application
for a in app.find("mShell") do
print a

end
→ [mShell,C:\System\Apps\mShell\mShell.app,270549657]

app.hide

• function hide(uidOrName)→ null

Permissions: ReadApp

Hides the application identified by uidOrName, i.e. sends it to the back-
ground. uidOrName can be the application’s UID, or its name (caption).
Throws ErrNotFound if the application does not exist.

// hide the messaging application
app.hide("Messaging")

12 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG 2.2. Module app: Application Control

app.key

• function key(scancodes)→ null

Permissions: ReadApp+WriteApp

• function key(keycodes, uidOrName)→ null

Permissions: ReadApp+WriteApp

Sends a keyboard event or a series of keyboard events to the device or to a
specific application.
With one argument, sends scancodes to the device. scancodes can be a
single integer, an array of integers, or a string. A positive integer causes a
press of the key with this scan code, a negative integer a release of the key
with this scan code (after changing its sign). Scan codes are OS and device
specific. Use ui.cmd (Reference, p. 135) after calling ui.keys(true) to
obtain the scan code for a specific key.
With two arguments, sends keycodes to the application defined by
uidOrName. keycodes can be a single integer, an array of integers, or
a string. Each integer or character causes a stroke of the key with this
code. Most key codes correspond to character codes, but some codes are re-
served for device specific keys. Use ui.cmd (Reference, p. 135) after calling
ui.keys(false) to obtain the key code for a specific key.

// Start the contacts application and send it a name
app.start("Contacts"); app.key("William", "Contacts")
// Simulate flip close and open on UIQ
app.key(0x77); sleep(2000); app.key(0x76)
// Show profile selection via power key on S60
app.key([0xa6, -0xa6])

app.open

• function open(file, uidOrName=null)→ Number

Permissions: Read+Write(file)+ReadApp+WriteApp

Opens a file, using the application defined by uidOrName. uidOrName can
be the application’s UID, or its name (caption). If uidOrName=null, the
standard application for files of this type is used.
Returns the UID of the started application.

m Mobile Shell Library Part Two Version 1.06 13

2. Library c© 2007 infowing AG

Throws ErrNotFound if the application does not exist.

// show an image file in the standard image viewer
uid=app.open("mShell.png");
// kill the app after ten seconds
sleep(10000); app.stop(uid)

app.runs

• function runs(uidOrName)→ Boolean

Permissions: ReadApp

Checks whether the application defined by uidOrName is running.
uidOrName can be the application’s UID, or its name (caption).
Throws ErrNotFound if the application does not exist.

// check whether the phone application is running
// the caption is in german...
app.runs("Telefon")
→ true

app.send

• function send(uidOrName, msgUid, params)→ null

Permissions: ReadApp+WriteApp

Send a message to the application defined by uidOrName. uidOrName can
be the application’s UID, or its name (caption). msgUid must be an integer
identifying the message type, and paramsmust be a string whose bytes define
the message.
Throws ErrNotFound if the application does not exist or is not running.
This function is completely Symbian OS specific; using it requires additional
information typically found in the Symbian OS SDKs. See also app.view

(p. 16).

// have the WML browser open a link
// WML browser has UID 0x10008d39 on Series 60
app.send(0x10008d39, 0, "http://wap.248.ch")

14 m Mobile Shell Library Part Two Version 1.06

http://www.symbian.com
http://www.symbian.com

c© 2007 infowing AG 2.2. Module app: Application Control

app.show

• function show(uidOrName)→ null

Permissions: ReadApp+WriteApp

Shows the application identified by uidOrName, i.e. brings it to the fore-
ground. uidOrName can be the application’s UID, or its name (caption).
Throws ErrNotFound if the application does not exist or is not running.

// make sure the mShell application is shown
app.show(app.uid)

app.start

• function start(uidOrName, background=false)→ null

Permissions: ReadApp+WriteApp

Starts the application identified by uidOrName. uidOrName can be the ap-
plication’s UID, or its name (caption). If background=true, the application
is started in the background, otherwise it is brought to the foreground.
Throws ErrNotFound if the application does not exist.

// start the WML browser in the background
// WML browser has UID 0x10008d39 on Series 60
app.start(0x10008d39, true)

app.stop

• function stop(uidOrName)→ null

Permissions: ReadApp

Stops (ends) the application identified by uidOrName. uidOrName can be
the application’s UID, or its name (caption).
Throws ErrNotFound if the application does not exist.

// stop the WML browser
// WML browser has UID 0x10008d39 on Series 60
app.stop(0x10008d39)

m Mobile Shell Library Part Two Version 1.06 15

2. Library c© 2007 infowing AG

app.view

• function view(uidOrName, viewUid)→ null

Permissions: ReadApp

• function view(uidOrName, viewUid, commandUid, params)→
null

Permissions: ReadApp+WriteApp

Switches to a view viewUid of the application identified by uidOrName.
uidOrName can be the application’s UID, or its name (caption).
With four parameters, sends the view the command commandUid and the
bytes of the string params.
Throws ErrNotFound if the application does not exist.
This function is completely Symbian OS specific; using it requires additional
information typically found in the Symbian OS SDKs.

function showcontact(id)
// build the parameter block
params=[1]; // EFocusedContactId
// encode the id as four byte integer
for i=1 to 4 do
append(params, id & 0xff); id = id shr 8

end;
app.view(0x101f4cce, // Phonebook application UID

4, // focused view
0x101f4ccf, // command UID
char(params)) // params must be string

end

showcontact(114)

app Constants

• const uid = 0x10204299 The UID of the m application.

16 m Mobile Shell Library Part Two Version 1.06

http://www.symbian.com
http://www.symbian.com

c© 2007 infowing AG 2.3. Module bigint: Arbitrarily Large Integers

2.3 Module bigint: Arbitrarily Large Inte-
gers

This module supports calculations with big integers. The maximum (or min-
imum) value for a big integer is limited only by available memory. All calcu-
lations are performed with full precision.
Big integers are native objects. Three functions convert between big integers
and other representations:

• bigint.new (p. 19) creates a new big integer from a number, a string
(in a given base, e.g. hexadecimal), or another big integer.

• bigint.num (p. 20) converts a big integer to a number (potentially
loosing significant digits).

• bigint.str (p. 21) converts a big integer to a string encoded in a
given base.

The big integer arguments of all functions can also be specified as a number
or as a string encoding a decimal number:

a=bigint.mul("33333333333333333333333333333333333", -2);
print a, bigint.str(a)
→ bigint@414ffc -66666666666666666666666666666666666

bigint.abs

• function abs(p)→ Native Object

Computes the absolute value of p as a big integer.

r=bigint.abs("-314159265358979323846264");
print bigint.str(r)
→ 314159265358979323846264

bigint.add

• function add(p, q)→ Native Object

Computes the sum of p and q as a big integer.

m Mobile Shell Library Part Two Version 1.06 17

2. Library c© 2007 infowing AG

r=bigint.add("123456789012345678901234567890",
8765432110);

print bigint.str(r)
→ 123456789012345678910000000000

bigint.cmp

• function cmp(p, q)→ Number

Compares p and q:

• Returns -1 if p < q.

• Returns 0 if p = q.

• Returns 1 if p > q.

p=bigint.new("100000000", 16);
q=bigint.new(4294967296);
print bigint.cmp(p, q)
→ 0

bigint.div

• function div(p, q)→ Native Object

Computes the quotient of p and q as a big integer. Throws
ErrDivideByZero if q=0.

r=bigint.div("123456789012345678901234567890",
1234567890);

print bigint.str(r)
→ 100000000010000000001

bigint.mod

• function mod(p, q)→ Native Object

Computes the remainder of p and q as a big integer. Throws
ErrDivideByZero if q=0.

18 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG 2.3. Module bigint: Arbitrarily Large Integers

r=bigint.mod("123456789012345678901234567893",
1234567890);

print bigint.str(r)
→ 3

bigint.mul

• function mul(p, q)→ Native Object

Computes the product of p and q as a big integer.

p=bigint.new(333333333333333);
r=bigint.mul(p, p);
print bigint.str(r)
→ 111111111111110888888888888889

bigint.neg

• function neg(p)→ Native Object

Computes the value of p with sign changed.

r=bigint.neg("314159265358979323846264")
print bigint.str(r)
→ -314159265358979323846264

bigint.new

• function new(p)→ Native Object

• function new(string, base=10)→ Native Object

Creates a new big integer with the value of p. p can be:

• Another big integer. In this case a copy of p is returned.

• A number. Digits after the decimal points are ignored, and for values
outside the range −263 to +263 − 1, the result is undefined.

• A string encoding an integer in the given base. Valid bases are in the
range 2 (binary) and 36 (using letters A to Z and a to z for digits 11 to
36).

m Mobile Shell Library Part Two Version 1.06 19

2. Library c© 2007 infowing AG

Leading and trailing blanks in the string are ignored.

Throws ErrArgument if the base is out of range or the string contains
invalid characters.

m=bigint.new(-18513.7);
print bigint.str(m)
→ -18513
m=bigint.new("ffffffffffffffff", 16);
print bigint.str(m, 4)
→ 33333333333333333333333333333333

bigint.num

• function num(p)→ Number

Converts the big integer p to a number. If p is outside the range −263 to
+263 − 1, the result is undefined.

r=bigint.div("12345678901234567890", 1234567890);
print bigint.num(r) / 2
→ 5000000000.5

bigint.pow

• function pow(p, q)→ Native Object

• function pow(p, q, m)→ Native Object

Efficiently computes pq as a big integer. With three arguments, computes the
remainder of dividing pq by m.
Throws ErrArgument if q<0. Throws ErrDivideByZero if m=0.

20 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG 2.4. Module bt: Bluetooth Communication

// perform RSA encryption with a 256-bit key
e=bigint.new("7715580902129052762255348495586732516285"+

"0754331340849769128881931930089847467");
m=bigint.new("1157337135319357914338302274338009877449"+

"56524669244552124759012865929681230709");
c=bigint.pow("3695195570339388218205223153428883192073"+

"329889262155589752278898769206369823",
e, m);

print bigint.str(c)
→ 2090963726256956961627254580276511758392932630933805

1745096332980705650678328

bigint.str

• function str(p, base=10)→ String

Converts the big integer p to a string in the given base. Valid bases are in the
range 2 (binary) and 36 (using letters a to z for digits 11 to 36).

// convert a large decimal to a large hexadecimal number
s=bigint.str("123456789012345678901234567890", 16);
print s
→ 18ee90ff6c373e0ee4e3f0ad2

bigint.sub

• function sub(p, q)→ Native Object

Computes the difference of p and q as a big integer.

r=bigint.sub("123456789012345678901234567890",
-8765432110);

print bigint.str(r)
→ 123456789012345678910000000000

2.4 Module bt: Bluetooth Communication

This module provides access to Bluetooth R© wireless communication with
other Bluetooth equipped devices. The supported functions are:

m Mobile Shell Library Part Two Version 1.06 21

http://www.bluetooth.org

2. Library c© 2007 infowing AG

• Obtaining the own bluetooth address and name, and modifying the lat-
ter.

• Getting and setting the Bluetooth visibility flag.

• Scanning for visible devices and obtaining the address, name and class,
also interactively.

• Creation of services (passive connections), either directly using a chan-
nel number, or by registering with an UUID for service discovery.

• Connecting to services (active connections), either directly using a
channel number, or by looking an UUID up via service discovery.

Terminology

Bluetooth is a relatively complex technology. The following is a quick crash
course of the key concepts required to completely understand this module.
For more information and detailed specifications, see www.bluetooth.org.

• Device Address: Each Bluetooth device is identified by a unique
48 bit address. In this module, an address is a string of six hex-
adecimal bytes, separated by colons, e.g. "00:E0:03:5E:AF:CD", or
"0:e0:3:5e:af:cd".

• Device Name: Each Bluetooth device can have a freely assignable
name. A well chosen name helps in distinguishing visible devices, but
is of little use when trying to automatically identify or find a device.

• Device Class: Each Bluetooth device has a class defining its type and
capabilities. The device class is a 24 bit integer, encoded as follows:

22 m Mobile Shell Library Part Two Version 1.06

http://www.bluetooth.org

c© 2007 infowing AG 2.4. Module bt: Bluetooth Communication

Bits Value Contents
0-1 Always zero
2-7 Minor device class:

interpretation depends on Major device class
8-12 Major device class:

0 Miscellaneous
1 Computer
2 Phone
3 LAN/Network access point
4 Audio/Video
5 Peripheral (mouse, joystick, keyboard)
6 Imaging (printer, display, scanner, camera)
7 Wearable

31 Uncategorized
13-23 Service class:

16 1 Positioning (GPS)
17 1 Networking (LAN)
18 1 Rendering (Video and Audio)
19 1 Capturing (Video and Audio)
20 1 Object Transfer (vCal, vCard)
21 1 Audio
22 1 Telephony
23 1 Information (WWW/WAP-Servers)

• SDP (Service Discovery Protocol): A mechanism to advertise ser-
vices (e.g. data synchronization, printing, scanning, or own services),
and discover them. Services are identified by UUIDs.

• UUID (Universally Unique Identifier): This is a 128 bit (16 byte)
quantity. In Bluetooth, each service has one or more UUIDs as-
signed: when creating a service, a UUID should be assigned to it (see
bt.start (p. 30)).

In this module, a UUID is represented as an array of four nonnegative
numbers, starting with bits 127 to 96, and ending with bits 31 to 0. See
also bt.uuid (p. 32).

In Bluetooth, often only 32 bits of the UUID are specified. Such an
UUID maps to a 128 bit UUID by adding fixed values for the lower 96
bits:

m Mobile Shell Library Part Two Version 1.06 23

2. Library c© 2007 infowing AG

u=bt.uuid(12345);
print u
→ [12345,4096,2147483776,1604007163]
for v in u do print hexstr(v) end
→ 3039

1000
80000080
5f9b34fb

A few of the standard 32 bit UUIDs are:
Hex Decimal Service Class

3 3 RFCOMM
100 256 L2CAP

1101 4353 Serial Port
1103 4355 Dialup Networking
1105 4357 Obex (Object Exchange)
1111 4369 Fax
1204 4612 Generic Telephony

• RFCOMM (Radio Frequency Communications): Provides reliable
communication between two Bluetooth devices. This corresponds to
the TCP layer in the Internet world.

• Channel: An integer identifying an RFCOMM communication stream.
This corresponds to a port number in the Internet world. A service can
be reached by a device address and a channel number.

Connections Are Streams

Once created, a Bluetooth connection is accessed via module io (Reference,
p. 111):

• io.read, io.readln, and io.readm receive data,

• io.write, io.writeln, io.writem, io.print, and io.println

send data,

• io.avail gets the number of bytes which can be read without block-
ing,

24 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG 2.4. Module bt: Bluetooth Communication

• io.wait waits for data which can be read without blocking,

• io.close closes the connection.

• io.ces gets and sets the character encoding scheme. As with files, the
default is io.raw.

• io.timeout sets the timeout for send and receive operations.

• io.flush sets the auto flush state. If auto flushing is disabled,
io.flush must be called to make sure all data is sent.

Simple Example

To illustrate use of the m Bluetooth module, a trivial client-server example is
presented. The server reverses each line of input it receives.
Client code:

use bt, io
// have the user select a device
dev=bt.select();
// connect to server
s=bt.conn(dev["adr"], "Reverser");
// write a line
io.writeln(s, "Hello world!");
// read the result
print io.readln(s)
→ !dlrow olleH
// and again
io.writeln(s, "Bye server");
print io.readln(s)
→ revres eyB
io.close(s)

m Mobile Shell Library Part Two Version 1.06 25

2. Library c© 2007 infowing AG

Server code:

// a function which reverses a string
function reverse(s)
c=code(s);
i=0; j=len(c)-1;
while i<j do
h=c[i]; c[i]=c[j]; c[j]=h; i++; j--

end;
return char(c)

end

use bt, io
// create and advertise a service called "Reverser"
service=bt.start("Reverser");
while true do // loop forever
// wait for a client
io.print(io.stdout, "Waiting...");
s=bt.accept(service);
print bt.adr(s),"ok.";
// read each line, writing it back reversed
line=io.readln(s);
while line#null do
io.writeln(s, reverse(line));
line=io.readln(s)

end;
io.close(s)

end
→ Waiting...00:0E:07:C9:EE:88 ok.

Waiting...

bt.accept

• function accept(service)→ Native Object

Permissions: FreeComm

Marks service available, then waits for a device connecting to service.
When a device connects successfully, marks service as unavailable, and
returns the connection stream.
See bt.start (p. 30) for an example.

26 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG 2.4. Module bt: Bluetooth Communication

bt.adr

• function adr(stream)→ String

Permissions: FreeComm

• function adr()→ String

Permissions: FreeComm

With one argument, returns the Bluetooth address of the device stream is
connected to.
Without arguments, returns the local (own) Bluetooth address.

s=bt.accept(service);
// who connected?
print bt.adr(s)
→ 00:0E:07:C9:EE:88
// our own bluetooth address
print bt.adr()
→ 00:E0:03:5E:AF:CD

bt.chan

• function chan(service)→ Array

Permissions: FreeComm

• function chan(adr, uuid)→ Array

Permissions: FreeComm

With one argument, returns the channel number of service, in an array with
the service name as key.
With two arguments, queries the service discovery database of the device with
address adr for all services with the service class UUID defined by uuid, and
returns their channel numbers in an array with the service names as keys. See
bt.uuid (p. 32) for the values allowed for uuid.

m Mobile Shell Library Part Two Version 1.06 27

2. Library c© 2007 infowing AG

// create a service on a fixed channel
s=bt.start("Sample", 18);
// obtain the channel of the service
c=bt.chan(s);
print c, keys(c)
→ [18] [Sample]
// query a device for all Obex services
c=bt.chan("00:0E:07:C9:EE:88", 4357);
print c, keys(c)
→ [9] [OBEX Object Push]
// query a device for all services using RFCOMM
c=bt.chan("00:0E:07:C9:EE:88", 3);
print c, keys(c)
→ [1,2,10,9,15,11,12,3] [Hands-Free Audio Gateway,

Headset Audio Gateway,OBEX File Transfer,OBEX Object
Push, Imaging,SyncMLClient,...<8>]

bt.conn

• function conn(adr, uuidOrChannel)→ Native Object

Permissions: FreeComm

If uuidOrChannel is an array or a string, queries the service discovery
database of the device with address adr for the first service with the ser-
vice class UUID defined by uuidOrChannel, then connects to the service’s
channel.
If uuidOrChannel is a number, connects directly to channel
uuidOrChannel of the device with address adr, without querying the
database.

// connect to the Obex service on a device
dev="00:0E:07:C9:EE:88";
s=bt.conn(dev, [4357]);
io.close(s)
// connect to channel 18 on the same device
s=bt.conn(dev, 18);
io.close(s)

28 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG 2.4. Module bt: Bluetooth Communication

bt.name

• function name()→ String

Permissions: FreeComm

• function name(newname)→ String

Permissions: FreeComm+WriteApp

Without an argument, returns the local (own) device name. With a single
argument, set the local device name to newname and returns the old name.

// change the name, returning the old one
print bt.name("Test Device #1")
→ Nokia 6670
// get the current name
print bt.name()
→ Test Device #1

bt.scan

• function scan(limited=false)→ Array

Permissions: FreeComm

• function scan()→ Array

Permissions: FreeComm

With a single argument, scans for other visible bluetooth devices in the neigh-
borhood, and returns the first device found, or null if there is no visible de-
vice.
If limited=false, the scan is performed with general unlimited inquiry ac-
cess code (IAC), returning all devices.
If limited=true, the scan is performed with the faster limited IAC, but only
returning devices which are scanning with limited IAC.
Without an argument, continues scanning, and returns the next device found,
or null if there are no more devices.
Making an SDP request (bt.chan, bt.conn) ends the current scan, i.e. the
next call to bt.scan will always start a new scan.
Each device found is returned as an array with the following keys:

m Mobile Shell Library Part Two Version 1.06 29

2. Library c© 2007 infowing AG

Key Meaning Type
adr Device address String
name Device name String
class Device class Integer

dev=bt.scan(false);
// print each device
while dev#null do
print dev;
// get the next device
dev=bt.scan()

end
→ [00:E0:03:5E:AF:CD,Test Device #1,5243404]
→ [00:0E:07:C9:EE:88,Test Device #2,5251596]

bt.select

• function select()→ Array

Permissions: FreeComm

Shows an interactive dialog scanning for Bluetooth devices and allowing the
user to select one. Returns the selected device in the same format as returned
by bt.scan (p. 29), or null if the user cancelled the selection.

print bt.select()
→ [00:E0:03:5E:AF:CD,Test Device #1,5243404]

bt.start

• function start(name, uuidOrChannel=null,flags=0)→
Native Object

Permissions: FreeComm

Creates a service with name name and returns it. To accept an incoming
connection on the service, use bt.accept (p. 26).
If uuidOrChannel is an array or a string, bt.start finds an unused chan-
nel and creates a service with the UUID defined by uuidOrChannel. The
service is advertised in the service discovery database of the device.

30 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG 2.4. Module bt: Bluetooth Communication

uuidOrChannel=null is equivalent to uuidOrChannel=name.
If uuidOrChannel is a number, listens directly on channel
uuidOrChannel, without advertising the service.
The security imposed on incoming connections is defined by flags, which
is a combination of the following values:
• const authenticate = 1 Connecting devices must be paired, or mu-
tual password authentication is requested.
• const encrypt = 2 Data transfers are encrypted.
• const authorise = 4 The user is asked for authorisation whenever a
device attempts to connect to the channel.

// create a service with the UUID of the Fax
// service class, and asking for authorisation
service1=bt.start("My Fax", [4369], bt.authorise);
// wait for a connection
conn=bt.accept(service1);
...
// create a service listening on channel 18
service2=bt.start("Sample", 18);
conn2=bt.accept(service2);
...

bt.stop

• function stop(service)→ null

Permissions: FreeComm

Stops service. If it has been advertised, it is removed from the service
discovery database.

bt.timeout

• function timeout()→ Number

Permissions: FreeComm

• function timeout(ms)→ Number

Permissions: FreeComm

m Mobile Shell Library Part Two Version 1.06 31

2. Library c© 2007 infowing AG

Gets or sets the timeout used during most functions of this module. Without
arguments, returns the current timeout in milliseconds. With one argument,
returns the old timeout, and sets the new timeout to ms. Setting the time-
out to zero (the default) or a negative value disables timeouts, i.e. Bluetooth
operations can block indefinitely, or use a timeout defined by the underlying
system.
The timeout is used in all following calls: whenever an operation does not
complete within the given number of milliseconds, it throws ErrTimedOut.

// allow 10 seconds to connect
bt.timeout(10000);
try
s=bt.conn("00:E0:03:5E:AF:CD", 4)
// connection successful...

catch e by
if index(e, "ErrTimedOut") # 0 then throw e end;
print "Could not connect within 10 seconds"

end

bt.uuid

• function uuid(uuid)→ Array

Permissions: FreeComm

Converts a number, string or array to a 128 bit UUID, and returns the UUID
as an array of four integers.

• If uuid is a number, uuid is considered a 32 bit Bluetooth UUID.

• If uuid is an array with one element, its only element is considered a
32 bit Bluetooth UUID.

• If uuid is an array with four elements, they are considered the four 32
bit values making up the entire 128 bit UUID (from highest to lowest).

• If uuid is a string with two characters or less, the characters are con-
sidered a 16 bit Bluetooth UIID.

• If uuid is a string with three or four characters, the characters are con-
sidered a 32 bit Bluetooth UIID.

32 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG 2.4. Module bt: Bluetooth Communication

• If uuid is a string with more than four characters, its first 16 charac-
ters are considered the 16 bytes of the UUID (from highest to lowest).
Missing bytes are assumed zero.

All other values throw ErrArgument.

print bt.uuid(12345);
→ [12345,4096,2147483776,1604007163]
print bt.uuid([12345]);
→ [12345,4096,2147483776,1604007163]
print bt.uuid("Sample")
→ [1398893936,1818558464,0,0]
print bt.uuid([1,2])
→ ErrArgument thrown

bt.visible

• function visible()→ Boolean

Permissions: FreeComm

• function visible(newvisible)→ Boolean

Permissions: FreeComm+WriteApp

Compatibility of function bt.visible

Nokia phones before Symbian 8a ok
Nokia phones with Symbian 8b ErrNotSupported

Sony Ericsson phonesc ErrNotSupported

aChanging the visibility is not reflected in the phone’s settings UI.
bParts of the Bluetooth API are not available on these phones.
cThe visibility flag can only be read, but not set.

Without an argument, returns the current visibility state of this device: true if
the device is detectable by others, false if it is not visible. With an argument,
sets the visibility to newvisible, and returns the old visibility state.

m Mobile Shell Library Part Two Version 1.06 33

2. Library c© 2007 infowing AG

// make the device visible
bt.visible(true)
// is it visible?
print bt.visible()
→ true

2.5 Module cam: Onboard Camera

This module provides access to the onboard camera for still images. Pictures
taken can be processed or saved by module module graph (Reference, p. 87).
Since the camera is a shared resource and consumes battery power, it must be
turned on before use by cam.on (p. 36) and turned off afterwards by cam.off
(p. 36). A typical example using the camera might look as follows:

// show the available image sizes
for s in cam.sizes() do
print s

end
→ [1280,960]

[640,480]
[160,120]

// turn the camera on for 640x480 size images
cam.on(1)
// produce a dark, contrast rich picture
cam.bright(-20); cam.contrast(30)
→ 0

0
// display a view finder close to the top left corner
cam.view(10,10)
// take an image
icon=cam.take()
// turn the camera off
cam.off()
// save the image via the graph module
s=graph.size(icon); // get the image size
graph.size(s[0], s[1]); // make graph big enough
graph.put(0,0,icon); // draw the image
graph.save("keyboard.jpg") // save it

34 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG 2.5. Module cam: Onboard Camera

Sample m screen

cam.bright

• function bright()→ Number

• function bright(b)→ Number

Gets or sets the brightness of the image taken. The brightness is a number
between -100 (very dark) and 100 (very bright). Standard brightness is 0.
Without arguments, returns the currently used brightness. With one argument,
returns the old brightness, and sets the new brightness to b.
Throws ErrInUse or ErrNotReady if the camera has not been turned on.

// show the view finder, increasing brightness
cam.on()
cam.view()
for b=-100 to 100 by 10 do
cam.bright(b); sleep(1000)

end;
cam.off()

cam.contrast

• function contrast()→ Number

• function contrast(c)→ Number

Gets or sets the contrast of the image taken. The contrast is a number between

m Mobile Shell Library Part Two Version 1.06 35

2. Library c© 2007 infowing AG

-100 (minimum contrast) and 100 (maximum contrast). Standard contrast is
0.
Without arguments, returns the currently used contrast. With one argument,
returns the old contrast, and sets the new contrast to c.
Throws ErrInUse or ErrNotReady if the camera has not been turned on.

// show the view finder, increasing contrast
cam.on()
cam.view()
for c=-100 to 100 by 10 do
cam.contrast(c); sleep(1000)

end;
cam.off()

cam.off

• function off()→ null

Removes the view finder if it is shown, and turns the camera off. Does nothing
if the camera is already off.

cam.on

• function on(sizeIndex=0)→ null

Turns the camera on and prepares it for taking images of the size
cam.sizes()[sizeIndex].
Throws ExcIndexOutOfRange if sizeIndex is less than 0 or greater than
the cam.sizes() - 1.
Throws ErrInUse if the camera is already on, or used by another application.

cam.sizes

• function sizes()→ Array

Returns the available image sizes, as an array of arrays containing image
width and image height. The actual sizes returned are hardware dependent.
The camera does not have to be on to obtain the image sizes.

36 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG 2.5. Module cam: Onboard Camera

for s in cam.sizes() do
print s

end
→ [640,480]

[320,240]
[160,120]

cam.take

• function take()→ Native Object

Compatibility of function cam.take

Sony Ericsson phones if cam.view

has not been called
ErrInUse

Takes an image of the configured size, brightness and contrast and returns
it as an icon (see graph.icon (Reference, p. 98)). The icon can be saved,
scaled, or analyzed using functions in module graph (Reference, p. 87).
Throws ErrInUse or ErrNotReady if the camera has not been turned on.

i=cam.take();
print i
→ icon@4186d8
// scale the image to one quarter and display it
graph.size(i,0.5)
→ [640,480]
graph.put(0,0,i)
graph.show()

m Mobile Shell Library Part Two Version 1.06 37

2. Library c© 2007 infowing AG

Sample m screen

cam.view

• function view(x=0,y=0,w=160,h=120)→ Array

Shows a view finder (the image currently seen by the camera) on the screen
at coordinates (x,y), in a rectangle of roughly width w and height h. (0,0)
is at the upper left corner of the m application view.
Returns the actual size of the rectangle used.
Throws ErrInUse or ErrNotReady if the camera has not been turned on.

// show the view centered on the graph view
gs=graph.size();
cam.on();
vs=cam.view();
x=math.trunc((gs[0]-vs[0])/2);
y=math.trunc((gs[1]-vs[1])/2);
// draw a frame around the view
graph.rect(x-2,y-2,vs[0]+4,vs[1]+4);
graph.show();
cam.view(x, y)

38 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG 2.6. Module mms: Multimedia Messages

Sample m screen

2.6 Module mms: Multimedia Messages

Compatibility of module mms
Sony Ericsson phones: all functions
except mms.senda

ErrNotSupported

aOnly sending of MMS is supported on SE devices.

This module supports sending and receiving of multi media messages
(MMS). In the context of this module, an MMS is simply a set of files being
sent from and to mobile devices, very similar to an e-mail with attachments.
MMS are identified by numbers. These numbers are used to retrieve and
update message contents, and to delete messages.
When a function of the module is called for the first time, it starts listening
for incoming messages and enqueues their numbers. Calling mms.receive

will return these numbers. Messages received earlier can be retrieved from
the inbox.
The typical sequence to consume messages starting with a certain token in
the subject (//tok in our example) is:

m Mobile Shell Library Part Two Version 1.06 39

2. Library c© 2007 infowing AG

nr=mms.receive(); // wait for a new message
msg=mms.get(nr); // get the message
words=split(msg["subject"]); // split into words
if len(words)>0 and words[0] = "//tok" then
// first word is //tok, process message files
for f in msg["files"] do
...

end;
// delete it from the inbox
mms.delete(nr)

end

The functions in this module correspond to those in module sms (Reference,
p. 125) for short messages.

mms.delete

• function delete(msgnum)→ null

Permissions: FreeComm+WriteApp

Delete the message with number msgnum from the inbox.
Throws ErrNotFound if the message with this number does not exist.

// delete all MMS inbox messages older than a week
lastweek=time.get()-7*24*3600;
for id in mms.inbox() do
if mms.get(id)["time"]<lastweek then
mms.delete(id)

end
end

mms.get

• function get(msgnum)→ Array

Permissions: FreeComm+ReadApp

Get the contents of the message with number msgnum. The message contents
are returned as an array with the following keys:

40 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG 2.6. Module mms: Multimedia Messages

Key Contents
sender The phone number (or other address) of the sender

of the message.
subject The subject of the message.
time The time stamp of the message, as seconds since

the start of year 0. See also module time (Refer-
ence, p. 131).

unread true if the message is still unread, false if it has
been seen.

files The list of files comprising the message.
Throws ErrNotFound if the message with number msgnum does not exist.

// play all MIDI files found in the MMS inbox
for id in mms.inbox() do
for f in mms.get(id)["files"] do
if len(f)>3 and substr(f,len(f)-4)=".mid" then
audio.play(f); audio.wait()

end
end

end

mms.inbox

• function inbox()→ Array

Permissions: FreeComm+ReadApp

Gets the ids of all MMS messages in the inbox.

print mms.inbox()
→ [1045642,1045678,1047382]

mms.receive

• function receive(timeout=-1)→ Number|null

Permissions: FreeComm+ReadApp

Receives a new message and returns its id. If there is no message, waits until
one arrives. If timeout>=0 and timeout milliseconds have passed without

m Mobile Shell Library Part Two Version 1.06 41

2. Library c© 2007 infowing AG

receiving anything, returns null.

// quickly check whether there is a new MMS
id=mms.receive(0);
if id#null then
msg=mms.get(id);
// process msg

end

mms.send

• function send(recipient, subject, files, sender=null)→
null

Permissions: CostComm+Read(files)

• function send(recipients, subject, files,
sender=null)→ null

Permissions: CostComm+Read(files)

Compatibility of function mms.send

Sony Ericsson phones: character sets
of attached files and the sender cannot
be set.

ErrNotSupported

Sends a multimedia message to one or several recipients. A sin-
gle recipient is specified as a single phone number string, multiple
recipients are specified as an array of phone number strings.
The message will get the subject subject. The files to be attached are de-
fined by files, an array with one element for each file to be sent. Each
element is:

• Either a string, directly denoting the file name, with automatically de-
rived MIME type and default character set,

• or an array of one to three elements, in the form
[name,mimeType,charset]. name is a string denoting the file
name, mimeType (if not missing or null) is the MIME type of the file,
and charset (if not missing or null) is the character set/encoding
specified as an integer IANA MIB enum value.

42 m Mobile Shell Library Part Two Version 1.06

http://www.iana.org

c© 2007 infowing AG 2.6. Module mms: Multimedia Messages

A few important character sets/encodings:
MIB enum Description
3 US-ASCII
4 ISO-8859-1 (Latin 1)
5 ISO-8859-2 (Latin 2)
106 UTF-8
1000 ISO-10646-UCS-2 (“Unicode”)
1001 ISO-10646-UCS-4

If sender is not null, the From: field of the outgoing message is set to
sender. Note that most MMSCs will set this field to the MSISDN of the
sending device when receiving the MMS, so specifying a sender has no effect
unless you operate your own MMSC.
This function throws ErrNotFound if any of the files to be attached does not
exist.
This function returns as soon as the message has been placed in the outbox.
Actual sending may occur at a later time (“store and forward” principle).

// find all m scripts
f=files.scan(system.docdir + "*.m");
// prepend the directory
for i=0 to len(f)-1 do
f[i]=system.docdir+f[i]

end;
// send all those files to two people
mms.send(["+41797654321", "+393401234567"],

"My mShell scripts", f);
// send all those files again, specifying a MIME type
// and Latin 1 character set
for i=0 to len(f)-1 do
f[i]=[f[i],’text/plain’,4]

end;
mms.send(["+41797654321", "+393401234567"],

"My mShell scripts", f);

m Mobile Shell Library Part Two Version 1.06 43

2. Library c© 2007 infowing AG

mms.set

• function set(msgnum, message)→ null

Permissions: FreeComm+WriteApp

Updates the short message with number msgnum with the fields from
message. The keys listed in mms.get (p. 40) must be used. The sender and
subject of the message will only be changed in the MMS inbox summary;
they cannot be changed in the actual message. files cannot be changed at
all.

// mark all MMS in the inbox as unread
for id in mms.inbox() do
mms.set(id, ["unread":true])

end

2.7 Module net: TCP/IP Networking

This module supports creation of active TCP connections to hosts anywhere
on the Internet. Secure connections based on SSL or TLS are also supported,
as well as simple host name and IP address resolution.
Listening for incoming (passive) connections is not possible. This generally
makes little sense anyway, as the phone is usually part of a private network
and not visible to the rest of the internet.
This module does not support IPv6.

Connections Are Streams

Once created, a TCP/IP connection, whether secure or unsecure, is accessed
via module io (Reference, p. 111):

• io.read, io.readln, and io.readm receive data,

• io.write, io.writeln, io.writem, io.print, and io.println

send data,

• io.avail gets the number of bytes which can be read without block-
ing,

44 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG 2.7. Module net: TCP/IP Networking

• io.wait waits for data which can be read without blocking,

• io.close closes the connection.

• io.ces gets and sets the character encoding scheme. As with files, the
default is io.raw.

• io.timeout sets the timeout for send and receive operations.

• io.flush sets the auto flush state. If auto flushing is disabled,
io.flush must be called to make sure all data is sent.

Internet Access Points

Using TCP/IP requires the phone to connect to an IAP (Internet Access
Point), typically via GPRS or UMTS. The TCP/IP functions of the phone deal
with these automatically, depending on the phone configuration. The net

module provides limited support to manage IAP connections: see net.iap

(p. 48) and net.stop (p. 50).

net.adr

• function adr(hostname)→ Array

Permissions: CostComm

• function adr()→ Array

Permissions: CostComm

Resolves a host name to its IP address or addresses. The addresses are re-
turned as an array of strings, each string representing the IP address in the
standard dot notation.
Without arguments, returns the local (own) IP address. Getting the local IP
address is not supported on all connections and may throw ErrTimedOut.

print net.adr(’www.google.com’)
→ [216.239.59.103,216.239.59.104,

216.239.59.99,216.239.59.147]
print net.adr()
→ [10.122.18.7]

m Mobile Shell Library Part Two Version 1.06 45

2. Library c© 2007 infowing AG

net.cert

• function cert(stream)→ Array

Permissions: CostComm

Gets the X.509 server certificate of the secure connection stream. The cer-
tificate identifies and (if it is valid) authenticates the host the connection has
been made to.
This function returns null if stream is not secure.
The certificate is returned as an array with the following keys:

Key Meaning Type
subject Certified subject (in X.500 format) Array
issuer Certificate issuer (in X.500 format) Array
version Certificate version Integer
serial Certificate serial number String
start Start of validity period Seconds
end End of validity period Seconds
md5 Fingerprint of certificate (MD5 hash) String

subject and issuer are arrays containing key-value pairs, with the keys
being hierarchical OID numbers. For instance, the key "2.5.4.3" stands
for ”Common Name”, and "2.5.4.10" for ”Organization Name”.
start and end define the validity period of the certificate, in seconds since
year zero, as used by module time (Reference, p. 131).
serial and md5 encode each byte as a string character; use .code (Refer-
ence, p. 45) to convert them to single bytes.

46 m Mobile Shell Library Part Two Version 1.06

http://asn1.elibel.tm.fr/en/oid/index.htm

c© 2007 infowing AG 2.7. Module net: TCP/IP Networking

// connect to a secure Web server
s=net.conn("www.yellownet.ch", 443, net.ssl);
// send a request
io.write(s, ’GET / HTTP 1.1\r\n\r\n’);
// read the first four lines
for i=1 to 4 do
print io.readln(s)

end
→ HTTP/1.1 302 Found

Date: Tue, 24 May 2005 12:47:08 GMT
Server: Stronghold
Location: https://www.postfinance.ch/

// look at the certificate
c=net.cert(s);
print c["subject"]["2.5.4.3"]
→ www.yellownet.ch
print c["subject"]["2.5.4.10"]
→ Die Schweizerische Post
// close the connection
io.close(s)

net.conn

• function conn(host, port, secure=null, silent=false)→
Native Object

Permissions: CostComm

Connects to the host host on TCP/IP port port. host can be a host name
(e.g. "www.m-shell.net"), or an IP address (e.g. "212.117.205.10").
If secure=null, the connection is unsecure. To secure the connection, use
one of the following constants:
• const ssl = "SSL3.0" Use SSL (Secure Sockets Layer) 3.0.
• const tls = "TLS1.0" Use TLS (Transport Layer Security) 1.0.
If silent=false, the user will be prompted when the certificate presented
by the server cannot be authenticated or has expired, giving the user the op-
portunity to accept the certificate for this session.
If silent=true, an invalid certificate will simply throw
ErrCertificateUnknown, or some other SSL exception.

m Mobile Shell Library Part Two Version 1.06 47

2. Library c© 2007 infowing AG

Compatibility of Secure Connections
Sony Ericsson phones Unreliable, may hang

// connect to Infowing’s SMTP mail server
s=net.conn("mail.infowing.ch", 25);
// read the prompt
print io.readln(s)
→ 220 mail.infowing.ch Microsoft ESMTP MAIL

Service, Version: 6.0.3790.1830 ready at Tue, 24
May 2005 13:58:44 +0200

// immediately logout again
io.write(s, "QUIT\r\n");
// read the goodbye message
print io.readln(s)
→ 221 2.0.0 mail.infowing.ch Service closing

transmission channel
// close the connection
io.close(s)

For a secure connection example, see net.cert (p. 46).

net.iap

• function iap()→ Array

Permissions: CostComm

• function iap(setting)→ Array

Permissions: CostComm+WriteApp

Sets and gets the preferred Internet Access Point (IAP) to use. The preferred
IAP setting consists of an array with three elements:

Index Meaning Type
0 Prompt user for IAP when connecting Boolean
1 Preferred IAP index Number
2 Bearer set supported by this IAP Number

The preferred IAP index corresponds to an entry in the IAP table in the phone.
The bearer set defines the set of bearers supported by this IAP. In most cases,
only the “prompt user” flag is of interest, as changing the IAP is rarely re-
quired under normal use.

48 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG 2.7. Module net: TCP/IP Networking

To obtain an IAP index and its bearer set, set the “prompt user” flag to
true, cause a connection to the IAP (e.g. by resolving a name), then call
iap.net() (this only works if there is no valid connection to an IAP)
Without arguments, this function returns the current preferred IAP setting.
With a single boolean argument, it returns the old setting and sets the “prompt
user” flag. With an array argument, it updates the corresponding entries, de-
pending on the length of the array (1 to 3 elements).

// get current setting
s=net.iap();
print s
→ [false,14,3]
// change the preferred IAP to 2, but enable prompting
net.iap([true, 2])
// disable prompting
net.iap(false)
// restore the old setting
net.iap(s)

net.name

• function name(address)→ Array

Permissions: CostComm

• function name()→ Array

Permissions: CostComm

Finds the host names belonging to an IP address. The IP address must be a
string in standard dot notation. The names are returned as an array of strings.
Without arguments, returns the local (own) host name.

print net.name(’62.65.129.6’)
→ [mail.infowing.ch]
print net.name()
→ [localhost]

m Mobile Shell Library Part Two Version 1.06 49

2. Library c© 2007 infowing AG

net.shut

• function shut(stream, abort=false)→ null

Permissions: CostComm

Shuts the connection defined by stream down. If abort=false, shutdown
is gracefully, i.e. all pending data is transmitted. If abort=true, sending and
receiving is stopped immediately.
io.close (Reference, p. 114) also shuts down a connection, but net.shut
gives finer control over connection termination, and allows to catch errors.

s=net.conn(’mail.infowing.ch’, 25);
// abort the connection
net.shut(s, true)

net.stop

• function stop()→ null

Permissions: CostComm

Stops the current IAP connection. Under normal circumstances, calling this
function is not required.

// change the IAP, then stop the connection
net.iap([false, 7]);
net.stop()
// obtaining the local IP address should restart
// the connection with the new IAP
net.adr()

net.timeout

• function timeout()→ Number

Permissions: CostComm

• function timeout(ms)→ Number

Permissions: CostComm

Gets or sets the timeout used when looking up names and when connecting.

50 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG 2.8. Module obex: Object Exchange Client

Without arguments, returns the current timeout in milliseconds. With one
argument, returns the old timeout, and sets the new timeout to ms. Setting the
timeout to zero (the default) or a negative value disables timeouts, i.e. TCP/IP
operations can block indefinitely, or use a timeout defined by the underlying
system.
The timeout is used in all following name resolution, connect and shutdown
calls: whenever an operation does not complete within the given number of
milliseconds, it throws ErrTimedOut.

// give the phone 10 seconds to connect
net.timeout(10000);
try
s=net.conn("mail.infowing.ch", 25)
// connection successful...

catch e by
if index(e, "ErrTimedOut") # 0 then throw e end;
print "Could not connect within 10 seconds"

end

2.8 Module obex: Object Exchange Client

This module supports sending and receiving of files via OBEX (Object Ex-
change) over a Bluetooth R©link. The module provides the client side; most
Bluetooth equipped devices have an OBEX server which can accept files (put
operation of the client); some servers can also deliver files (get operation of
the client).
See also module bt (p. 21).
Usage of this module typically follows this pattern:

m Mobile Shell Library Part Two Version 1.06 51

http://www.bluetooth.org

2. Library c© 2007 infowing AG

function btsend(files)
// have the user choose a device
dev=bt.select();
if dev#null then
adr=dev[’adr’];
// connect after getting the channel for the
// OBEX Push Service
obex.conn(adr, bt.chan(adr, obex.uuid)[0]);
// send all the files
for f in files do
obex.put(f)

end;
obex.close()

end
end

// send three files
btsend([’sample.dat’, ’moon.gif’, ’bells.mp3’])

obex.close

• function close()→ null

Permissions: FreeComm

Closes the connection to the server. Does nothing if there is no connection.

obex.conn

• function conn(adr, channel, password=null)→ String

Permissions: FreeComm

Connects to the OBEX server on the host with Bluetooth address adr, on
channel channel. If password#null, it will be used during OBEX authen-
tication.
The channel is normally obtained by querying the hosts service discovery
database via bt.chan (p. 27) for obex.uuid (p. 55).
If successful, returns the “who” name of the OBEX server.

52 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG 2.8. Module obex: Object Exchange Client

dev="00:0E:07:C9:EE:88";
channel=bt.chan(dev, obex.uuid)[0];
print obex.conn(dev, channel)
→ peer2

obex.get

• function get(path, name=null)→ String

Permissions: Write(path)+FreeComm

Gets (pulls) a file from the server, storing it in path. The object (or file) to
be pulled is given by name. If name=null, it equals to path without any
directory components.
Note that not all servers support file pulling.
Throws ErrDisconnected if the client is not connected.

// get a vCard into the cards directory
obex.get(’\\cards\\William.vcf’, ’OwnCard.vcf’)

obex.path

• function path(name, create=false)→ null

Permissions: FreeComm

Changes the directory on the server to name. If name="..", changes to the
parent directory. If create=true, the directory is also created if it doesn’t
exist.
Note that not all servers support directories.
Throws ErrDisconnected if the client is not connected.

// change to directory ’images’, creating it if required
path(’images’, true);
// change back to the parent
path(’..’)

m Mobile Shell Library Part Two Version 1.06 53

2. Library c© 2007 infowing AG

obex.put

• function put(path, name=null, type=null,
description=null)→ null

Permissions: Read(path)+FreeComm

Puts (pushes) a file to the server, getting the data from file. The name of the
file on the server is given by name, its MIME type by type. description
is an optional description of the data for the server.
If name=null, it equals to file without any directory components.
If type=null, it is derived from the file extension for many important file
types.
Throws ErrDisconnected if the client is not connected.

// send a screen shot to the server
obex.put("c:\\Nokia\\Images\\Fe_img\\Fescr(0).jpg",

"myapp.jpg", "image/jpeg",
"Screen shot of my app")

obex.timeout

• function timeout()→ Number

Permissions: FreeComm

• function timeout(ms)→ Number

Permissions: FreeComm

Gets or sets the timeout used during most functions of this module. Without
arguments, returns the current timeout in milliseconds. With one argument,
returns the old timeout, and sets the new timeout to ms. Setting the timeout to
zero (the default) or a negative value disables timeouts, i.e. OBEX operations
can block indefinitely, or use a timeout defined by the underlying system.
The timeout is used in all following calls: whenever an operation does not
complete within the given number of milliseconds, it throws ErrTimedOut.
A timed out call will always close the OBEX connection; obex.conn (p. 52)
must be called to reconnect.

54 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG 2.9. Module phone: Phone Calls

obex.who

• function who()→ String|null

Permissions: FreeComm

• function who(name)→ String|null

Permissions: FreeComm

Gets or sets the local “who” name for the next connection.
Without arguments, returns the current “who” name, or null if none is set.
With one argument, returns the old name and sets the new name to name.
Setting it to null disables sending the “who” name.
Some servers assume a special role if a certain name is presented. For most
purposes, you do not need to set a “who” name.
obex.who must be called before obex.conn (p. 52).

// set the "who" name to ’peer1’
obex.who(’peer1’)

obex Constants

• const uuid = 4357 The standard BT UUID for the Obex Push Service.

2.9 Module phone: Phone Calls

This module allows to monitor and make voice phone calls. The module can
monitor at most one call at the same time. The following diagram depicts the
relationship between states and functions:

m Mobile Shell Library Part Two Version 1.06 55

2. Library c© 2007 infowing AG

state(idle)

hangup()

dial()new()
hangup()

Idle Active

user answers:
Ringing state(active)

answer()

user dials:
new()

• If phone.new (p. 58) detects an incoming call, this new call is
phone.ringing (p. 59). It can either be answered via phone.answer
(p. 56) or by the user, or rejected via phone.hangup (p. 57) or by the
user. Once the call has been answered, it becomes phone.active

(p. 59).

• If phone.new detects an outgoing call dialled by the user, or
phone.dial (p. 57) successfully establishes one, the call also becomes
phone.active.

• An active call can be terminated explicitly via phone.hangup. Alter-
natively, phone.state (p. 58) can wait for it becoming phone.idle

(p. 59), i.e. for its termination.

phone.answer

• function answer()→ null

Permissions: FreeComm

Answers an incoming (ringing) call by accepting it. This should be called
after phone.new (p. 58) returns with an incoming call. See there for an
example.
Throws ErrDisconnected if the there is no current call.

56 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG 2.9. Module phone: Phone Calls

phone.dial

• function dial(number, timeout=-1)→ Boolean

Permissions: FreeComm+CostComm

Dials the given phone number to establish a voice call. If timeout>=0,
waits at least timeout milliseconds before giving up. Returns true if the
call could be established and the remote party has answered, or false if the
timeout was reached.
Throws ErrInUse if a call is already active.

// make a one minute call to +41797654321
if phone.dial("+41797654321", 30000) then
sleep(60000);
phone.hangup()

end

phone.hangup

• function hangup()→ null

Permissions: FreeComm

Disconnects the current call (“hangs up” the phone).
Throws ErrDisconnected if the there is no current call.
Does not hang up a call which was not made via phone.dial (p. 57) or
obtained via phone.new (p. 58).

phone.ms

• function ms()→ Number

Permissions: FreeComm

Gets the duration of the current call in milliseconds.
Throws ErrDisconnected if there is no current call.
See phone.state (p. 58) for an example.

m Mobile Shell Library Part Two Version 1.06 57

2. Library c© 2007 infowing AG

phone.new

• function new(timeout=-1)→ Array|null

Permissions: FreeComm

Waits for a new call (incoming or outgoing), and returns an array with the
following fields:

Key Meaning Type
incoming true for incoming, false for outgoing Boolean
number Phone number of remote party String

If timeout>=0, waits at least timeout milliseconds before giving up. Re-
turns null if the timeout was reached.

// reject all incoming calls from +41797654321
while true do
c=phone.new();
if c["incoming"] then
if c["number"]="+41797654321" then
// we reject this call
phone.hangup()

else
// other calls are accepted
phone.answer()

end
end

end

phone.state

• function state(mask=phone.idle | phone.ringing |
phone.active, timeout=-1)→ Number|null

Permissions: FreeComm

Waits until the current call enters one of the states in mask, and returns the
current state. If timeout>=0, waits at least timeout milliseconds before
giving up and returning null.
Throws ErrDisconnected if there is no current call.

58 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG 2.10. Module proc: m Processes

// log number and duration of each outgoing call
while true do
c=phone.new();
if not c["incoming"] then
// wait until the call becomes idle again
phone.state(phone.idle);
print phone.ms(),"ms call to",c["number"]

end
end

phone Constants

• const idle = 1 The call is idle, i.e. was hung up.
• const ringing = 2 A call is coming in and must be answered.
• const active = 4 A call is active.

2.10 Module proc: m Processes

This module manages m processes (scripts). It can start and stop, and show
and hide processes. It also supports a simple inter-process communication
(IPC) mechanism via unidirectional named pipes, and an argument string.
Processes are identified by the name of their script. Since shell
processes do not have an associated script and thus no name, they
cannot be managed from other processes. For instance, the script
c:\documents\mShell\BTScanner.m has an associated process with
name BTScanner. Process names are not case sensitive.

proc.arg

• function arg()→ String

Get the argument string specified when the process was started via proc.run
(p. 63). For processes started manually from the process list or via the au-
tostart feature, proc.arg returns the empty string.

m Mobile Shell Library Part Two Version 1.06 59

2. Library c© 2007 infowing AG

// print the command line argument
print proc.arg()
→ hello

proc.close

• function close(name)→ null

• function close()→ null

With one argument, closes the process with the given name. Without an ar-
gument, closes the process it is called from.
Closing a process also stops it if it is running. If the process is already closed,
the call is ignored.
Throws ErrNotFound if there is no process with the given name.

// stop and close the BTScanner process
proc.close("BTScanner")

proc.find

• function find(name="*")→ Array

Gets a list of all known processes, whose name matches name. name can
contain the wildcards * (matches any sequence of characters) and ? (matches
any single character).

// start all processes which end on "Test"
for f in proc.find("*Test") do
proc.run(f)

end

proc.hide

• function hide(name)→ null

• function hide()→ null

With one argument, hides the process with the given name. Without an argu-
ment, hides the process it is called from.

60 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG 2.10. Module proc: m Processes

Hiding a process simply shows the standard list of scripts and modules.
If the process is already hidden, the call is ignored.
Throws ErrNotFound if there is no process with the given name.

// hide the current process
proc.hide()

proc.pipe

• function pipe(name, create=true, bufsize=256)→ Native
Object

Opens or creates a pipe with name name and returns a stream to read from
and write to the pipe. The pipe can be opened by other processes using the
same name, thus providing a communication channel between m processes.
If create=false, the function throws ErrNotFound if the pipe does not
already exist.
If created, the pipe will have a buffer of bufsize bytes. The default size
is large enough for efficient inter-process communication (IPC): whenever
there is not enough room in the pipe buffer, a write to the pipe will block until
another process reads from the pipe to free up space.
However, if the same process reads from and writes to the pipe, the buffer
must be large enough to hold all data written between reads. This is the only
case where larger buffer sizes may be needed.
Once created, a pipe stream is accessed via module io (Reference, p. 111):

• io.read, io.readln, and io.readm read data,

• io.write, io.writeln, io.writem, io.print, and io.println

write data,

• io.avail gets the number of bytes which can be read without block-
ing,

• io.wait waits for data which can be read without blocking,

• io.close closes the stream (but not the pipe). The pipe will be deleted
when all streams referencing it have been closed.

m Mobile Shell Library Part Two Version 1.06 61

2. Library c© 2007 infowing AG

• io.ces gets and sets the character encoding scheme. As with files, the
default is io.raw.

• io.timeout sets the timeout for read and write operations.

• io.flush sets the auto flush state. If auto flushing is disabled,
io.flush must be called to make sure all data is written.

With io.readm (Reference, p. 117) and io.writem (Reference, p. 120) are
ideally suited for pipes, as data is both written and read by m.
Only one process can read from the pipe at a given time. Issuing a read with
another read pending (from another process) will throw ErrInUse.
Up to sixteen processes can write to the pipe at a given time. Issuing a
write when sixteen other writes are pending (from other processes) will throw
ErrNotReady.
Pipes are unidirectional. For bidirectional communication between processes,
two pipes (with different names) are required.
The first trivial example just shows how to read from and write to a pipe:

// create a pipe stream and write to it
s=proc.pipe("SamplePipe");
io.writeln(s, "Hello world!");
// read from the pipe what was written into it
print io.readln(s)
→ Hello world!
// close the stream; this will also delete the pipe
io.close(s)

A more realistic example consists of two processes with two pipes. The first
process in script Reverser reads a line from pipe ReverserIn, and writes
the reversed line to pipe ReverserOut:

62 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG 2.10. Module proc: m Processes

function reverse(s)
c=code(s);
i=0; j=len(c)-1;
while i<j do
h=c[i]; c[i]=c[j]; c[j]=h; i++; j--

end;
return char(c)

end

// create (or open) the two pipes
rin=proc.pipe("ReverserIn");
rout=proc.pipe("ReverserOut");
// loop forever reading, reversing and writing
while true do
io.writeln(rout, reverse(io.readln(rin)))

end

We now can use the reverser process:

// make sure the reverser runs
proc.run("Reverser");
rin=proc.pipe("ReverserIn");
rout=proc.pipe("ReverserOut");
io.writeln(rin,"Hello world!");
print io.readln(rout)
→ !dlrow olleH

proc.run

• function run(name, arg="")→ null

Runs (starts) the process with the given name, and the argument string arg.
If the process is already running, the call is ignored.
The argument string is accessed via proc.arg (p. 59) from the target process.
Throws ErrNotFound if there is no process with the given name.

// start the BTScanner process, passing "hello" to it
proc.run("BTScanner", "hello")

m Mobile Shell Library Part Two Version 1.06 63

2. Library c© 2007 infowing AG

proc.runs

• function runs(name)→ Boolean

Returns true if the process with the given name is running, and false if it
is stopped or closed.
Throws ErrNotFound if there is no process with the given name.

// stop the BTScanner process
proc.stop("BTScanner");
// it should not be running now
proc.runs("BTScanner")
→ false

proc.show

• function show(name)→ null

• function show()→ null

With one argument, shows the process with the given name. Without an ar-
gument, shows the process it is called from.
Showing a process shows its console, or any other view it is displaying. If the
process was closed, it is opened, and its empty console is shown.
If the process is already shown, the call is ignored.
Throws ErrNotFound if there is no process with the given name.

// show the current process
proc.show()

proc.stop

• function stop(name)→ null

• function stop()→ null

With one argument, stops the process with the given name. Without an argu-
ment, stops the process it is called from, i.e. terminates it.
If the process is not running, the call is ignored.
Throws ErrNotFound if there is no process with the given name.

64 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG 2.11. Module vibra: Vibration Control

// stop the current process
proc.stop()

2.11 Module vibra: Vibration Control

Compatibility of module vibra
Nokia phones before Symbian 8a Internal Error

aSee also Forum Nokia, Developer Platform 2.0: Known Issues, 5.13

This module provides simple functions to control the device vibration feature
of some devices.

vibra.off

• function off()→ null

Turns the vibration off. If the device is not vibrating, the call is ignored.

vibra.on

• function on(duration=0)→ null

Turns the vibration on for the specified duration (in milliseconds). If
duration=0, vibration is turned on until vibra.off (p. 65) is called.
This function returns immediately, before the specified time has passed.
Throws ExcValueOutOfRange if the duration is outside the valid range (0
to 65535).

// vibrate for one second:
vibra.on(1000)
// another way to vibrate for one second:
vibra.on();
sleep(1000);
vibra.off()

m Mobile Shell Library Part Two Version 1.06 65

2. Library c© 2007 infowing AG

66 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG Index

Index
abs function (in bigint), 17

accept function (in bt), 26

active constant (in phone), 59

add function (in agenda), 9

add function (in bigint), 17

adr function (in bt), 27

adr function (in net), 45

adr, bluetooth device field, 30

agenda, 5

database, 5

entry types, 5

fields, 5

agenda module, 5

alarm, agenda field, 6

all constant (in agenda), 7

anniv constant (in agenda), 6

answer function (in phone), 56

app module, 11

application control, 11

appt constant (in agenda), 6

arg function (in proc), 59

argument string, 59

authenticate constant (in bt), 31

authorise constant (in bt), 31

auto flushing, 25, 45, 62

background, 12

base, agenda field, 6

bigint module, 17

Bluetooth, 21

bluetooth

address, 22

channel, 24

device class, 22

device name, 22

device selection, 30

RFCOMM, 24

SDP, 23

starting service, 30

timeout, 31

UUID, 23, 32

visibility, 33

bright function (in cam), 35

bt module, 21

calendar, 5

cam module, 34

cert function (in net), 46

certificate, 46

chan function (in bt), 27

character set, 42

class, bluetooth device field, 30

close function (in obex), 52

close function (in proc), 60

cmp function (in bigint), 18

conn function (in bt), 28

conn function (in net), 47

conn function (in obex), 52

m Mobile Shell Library Part Two Version 1.06 67

Index c© 2007 infowing AG

contrast function (in cam), 35

daily constant (in agenda), 7

delete function (in agenda), 9

delete function (in mms), 40

dial function (in phone), 57

div function (in bigint), 18

done constant (in agenda), 6

done, agenda field, 6

encrypt constant (in bt), 31

end, agenda field, 6, 7

end, certificate field, 46

ErrArgument, 20, 33

ErrCertificateUnknown, 47

ErrDisconnected, 56–58

ErrDivideByZero, 18

ErrInUse, 35–38, 57, 62

ErrNotFound, 9, 10, 12, 14–16, 40, 41,
43, 60, 61, 63, 64

ErrNotReady, 35–38, 62

ErrNotSupported, 33, 39, 42

ErrTimedOut, 32, 45, 51, 54

event constant (in agenda), 6

ExcIndexOutOfRange, 36

ExcValueOutOfRange, 6, 65

file, application field, 12

files, MMS field, 41

find function (in agenda), 10

find function (in app), 12

find function (in proc), 60

flags, agenda field, 6

foreground, 15

get function (in agenda), 10

get function (in mms), 40

get function (in obex), 53

GPRS, 45

hangup function (in phone), 57

hide function (in app), 12

hide function (in proc), 60

host name, 45

IAP, 45, 48

iap function (in net), 48

idle constant (in phone), 59

inbox function (in mms), 41

incoming, call field, 58

inter-process communication, 59, 61

Internet, 44

Internet Access Point, 45, 48

interval, agenda field, 7

IPC, 59, 61

issuer, certificate field, 46

key function (in app), 13

Large integers, 17

loc, agenda field, 6

m

process, 59

md5, certificate field, 46

MIB enum, 42

mms module, 39

mod function (in bigint), 18

monthlydate constant (in agenda), 8

68 m Mobile Shell Library Part Two Version 1.06

c© 2007 infowing AG Index

monthlyday constant (in agenda), 8

ms function (in phone), 57

mul function (in bigint), 19

name function (in bt), 29

name function (in net), 49

name, application field, 12

name, bluetooth device field, 30

named pipes, 59

neg function (in bigint), 19

net module, 44

new function (in bigint), 19

new function (in phone), 58

num function (in bigint), 20

number, call field, 58

obex

timeout, 54

obex module, 51

object exchange, 51

off function (in cam), 36

off function (in vibra), 65

OID numbers, 46

on function (in cam), 36

on function (in vibra), 65

open function (in app), 13

path function (in obex), 53

phone calls, 55

phone module, 55

pipe function (in proc), 61

pow function (in bigint), 20

prio, agenda field, 6

proc module, 59

processes, 59

put function (in obex), 54

receive function (in mms), 41

rep constant (in agenda), 6

rep, agenda field, 6

RFCOMM, 24

ringing constant (in phone), 59

run function (in proc), 63

runs function (in app), 14

runs function (in proc), 64

scan function (in bt), 29

SDP, 23

Secure connection, 47

Secure Sockets Layer, 47

select function (in bt), 30

send function (in app), 14

send function (in mms), 42

sender, MMS field, 41

serial, certificate field, 46

server certificate, 46

set function (in agenda), 11

set function (in mms), 44

show function (in app), 15

show function (in proc), 64

shut function (in net), 50

sizes function (in cam), 36

SSL, 44, 47

ssl constant (in net), 47

start function (in app), 15

start function (in bt), 30

start, agenda field, 6

m Mobile Shell Library Part Two Version 1.06 69

Index c© 2007 infowing AG

start, certificate field, 46

state function (in phone), 58

stop function (in app), 15

stop function (in bt), 31

stop function (in net), 50

stop function (in proc), 64

str function (in bigint), 21

sub function (in bigint), 21

subject, certificate field, 46

subject, MMS field, 41

take function (in cam), 37

TCP, 44

TCP/IP

timeout, 50

TCP/IP networking, 44

text, agenda field, 6

time, MMS field, 41

timeout function (in bt), 31

timeout function (in net), 50

timeout function (in obex), 54

TLS, 44, 47

tls constant (in net), 47

to-do list, 5

todo constant (in agenda), 6

Transport Layer Security, 47

type, agenda field, 7

uid constant (in app), 16

uid, application field, 12

UMTS, 45

unread, MMS field, 41

UUID, 23

uuid constant (in obex), 55

uuid function (in bt), 32

version, certificate field, 46

vibra module, 65

vibration control, 65

view function (in app), 16

view function (in cam), 38

visible function (in bt), 33

weekly constant (in agenda), 7

when, agenda field, 7

who function (in obex), 55

X.509, 46

yearlydate constant (in agenda), 8

yearlyday constant (in agenda), 8

70 m Mobile Shell Library Part Two Version 1.06

	Introduction
	Library
	Module agenda: Agenda Database
	Module app: Application Control
	Module bigint: Arbitrarily Large Integers
	Module bt: Bluetooth Communication
	Module cam: Onboard Camera
	Module mms: Multimedia Messages
	Module net: TCP/IP Networking
	Module obex: Object Exchange Client
	Module phone: Phone Calls
	Module proc: m Processes
	Module vibra: Vibration Control

	Index

