
Reference
Version 1.17

m Mobile Shell, Reference, Version 1.17
Written by Lukas Knecht

www.m-shell.net

Document IW-M-REF-1.31

c© 2004-2007 infowing AG, 8703 Erlenbach, Switzerland

The information contained herein is the property of infowing AG and shall neither be reproduced
in whole or in part without prior written approval from infowing AG. All rights are reserved,
whether the whole or part of the material is concerned, specifically those of translation, reprint-
ing, reuse of illustration, broadcasting, reproduction by photocopying machine or similar means
and storage in data banks. infowing AG reserves the right to make changes, without notice, to the
contents contained herein and shall not be responsible for any damages (including consequential)
caused by reliance on the material as presented.

Typeset in Switzerland.

c© 2007 infowing AG Contents

Contents

1 Introduction 3

2 Language 5
2.1 Data Types . 5
2.2 Comments . 6
2.3 Literals . 7
2.4 Variables . 10
2.5 Arrays . 11
2.6 Expressions . 13
2.7 Statements . 18

2.7.1 Assignment . 19
2.7.2 Increment . 20
2.7.3 If Statement . 21
2.7.4 While Statement 22
2.7.5 Do-Until Statement 23
2.7.6 For Statement . 23
2.7.7 Case Statement . 25
2.7.8 Break Statement 27
2.7.9 Return Statement 27
2.7.10 print Statement . 27

2.8 Functions . 29
2.9 Modules . 34
2.10 Exceptions . 38
2.11 Source Structure . 40

m Mobile Shell Reference Version 1.17 1

Contents c© 2007 infowing AG

3 Library 41
3.1 Path and File Names . 41
3.2 Builtin Functions and Constants 43
3.3 Module array: Array Functions 55
3.4 Module audio: Audio Functions 63
3.5 Module contacts: Contacts Database 70
3.6 Module files: File and Directory Access 78
3.7 Module graph: Screen Graphics 87
3.8 Module gsm: GSM information 108
3.9 Module io: File and Stream Input/Output 111
3.10 Module math: Mathematical Functions 121
3.11 Module sms: Short Messages 125
3.12 Module system: System Related Functions 129
3.13 Module time: Time and Date Functions 131
3.14 Module ui: User Interface Functions 135

4 Interactive Shells 149
4.1 Simplified Syntax for Interactive Use 149
4.2 Shell Builtin Functions . 150

5 SMS Control 155

A Appendix 157
A.1 Exception Tags . 157
A.2 Reserved words . 161
A.3 Properties (.prp) File . 161
A.4 User Permissions . 165

Index 167

2 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG

1. Introduction
m is a simple and easy to learn programming language intended for mobile
phones (“Smart Phones”). m has been specifically designed for the limited
text editing capabilities of these devices. The language thus has few special
characters, and the library functions generally use short identifiers.
To obtain a flat learning curve, in particular for the novice user, and to keep
editing m code manageable on a cell phone, the m language has been kept
simple, while still providing a rich set of programming constructs and func-
tions.
Likewise, the library of modules closely reflects the capabilities of smart
phones. Modules have been designed with ease of use in mind, without re-
quiring complex setup operations or even an understanding of the underlying
architecture.
To protect the phone’s data, the user’s purse, and the phone’s integrity from
malevolent scripts, permissions to use potentially dangerous functions are
configurable.

m Mobile Shell Reference Version 1.17 3

1. Introduction c© 2007 infowing AG

4 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG

2. Language
This chapter defines the m programming language. m is a procedural lan-
guage supporting code reuse through a simple concept of modules.
The following sections introduce the building blocks of m. After each sec-
tion, the m syntax is summarized by a formal definition in EBNF (Extended
Backus Naur Form):

• Text in single quotes ’’ corresponds to the actual text (terminal sym-
bols).

• Text in bold face denotes keywords (reserved words).

• The vertical bar | separates alternatives.

• Text in brackets [] is optional.

• Text in curly braces {} can be repeated (zero times, once or many
times).

• Text in parentheses () is grouped together.

m scripts are read as a series of tokens which are separated by “separator”
characters (all characters which are not letters, digits or an underscore). White
space (blank and new line) always separates two characters. The amount of
white space used does not affect the meaning of a script, but white space
should be added sensibly to make a script more readable by indenting lines to
reflect the structure of the code.

2.1 Data Types

m supports the following data types:

m Mobile Shell Reference Version 1.17 5

http://en.wikipedia.org/wiki/Extended_Backus-Naur_form

2. Language c© 2007 infowing AG

• Number: numbers have a range of roughly −10308 to 10308 and have a
precision of almost 17 decimal digits1.

• String: strings are sequences of characters2. Strings are immutable:
their length is fixed, and individual characters cannot be changed. How-
ever, there are many builtin functions (see builtin functions (p. 43))
manipulating strings.

• Boolean: booleans are logical values, i.e. either true or false. For
instance, the result of a comparison is of Boolean type. Booleans are
also often used as flags or to denote options for functions.

• Array: arrays are collections of arbitrarily many values. Multidimen-
sional arrays (e.g. matrices) are constructed as arrays of arrays. In m,
arrays are dynamic in size. Elements can be appended or removed. El-
ements can be indexed by numbers or strings (“associative array”). See
also section 2.5 (p. 11).

• Function Reference: a reference (“pointer”) to a function. The ref-
erence can be used to specify callback functions, or to implement a
simple polymorphism scheme.

• Null: this special type denotes an uninitialized or unspecified value.
The only value of this type is null.

• Native Objects: are created by modules which are tied closely into the
underlying operating system, e.g. by module io (p. 111). Native ob-
jects can only be assigned and compared for identity.

2.2 Comments

Normally, all characters in an m script are assumed to be m language. Com-
ments intended for the human reader must therefore be specially marked:

• Single line comments start with a double slash: any text from a // to
the end of the line containing it is considered a comment.

1Internally, numbers are stored as 64 bit floating point values in IEEE format, with 52+1 bit
mantissa and 11 bit exponent.

2Internally, each character is represented by 16 bits, thus supporting the UNICODE R© basic
multilingual plane. However, fonts often support only the ISO-8859-1 (Latin) character set.

6 m Mobile Shell Reference Version 1.17

http://www.unicode.org

c© 2007 infowing AG 2.3. Literals

• Multiline comments start with slash-star and end with star-slash: any
text between /* and */ is considered a comment and ignored. These
comments can be nested.

print 3*3 // this prints nine
→ 9
/* The following m code is within this comment,

so it is ignored:
print 5/7

This is still part of the comment.
/* This is a nested comment ending here: */
This is the last line of this comment. */

print 3/4
→ 0.75

Comment marks cannot be placed within string literals (see section 2.3 (p. 7)).

2.3 Literals

Literals are concrete values specified explicitly in the code. Except for ar-
ray literals, they are fixed and cannot change during script execution. Array
literals are more complex and discussed in section 2.5 (p. 11).

SimpleLiteral := NumberLiteral | StringLiteral | BooleanLiteral |
FunctionLiteral | NullLiteral .

Number Literals

A number literal is a sequence of digits, with an optional decimal point, and
an optional decimal exponent. The digits must not be separated by white
space or thousands separators:

m Mobile Shell Reference Version 1.17 7

2. Language c© 2007 infowing AG

print 0
→ 0
print 3.1415927
→ 3.1415927
print 6.02214199e+23
→ 6.022142E+23
print 1E-3
→ 0.001

Integer numbers can also be written in hexadecimal notation, by prefixing
them with 0x:

print 0xff
→ 255
print 0x1000
→ 4096

NumberLiteral :=
Digit {Digit} [’.’ {Digit}]
[(E’ | ’e’) [’-’ | ’+’] Digit {Digit}] |

’0x’ HexDigit {HexDigit} .
Digit :=
’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’ .

HexDigit := Digit | ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ |
’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ .

String Literals

A string literal is a sequence of characters between single or double quotes.

print ’Hello, world!’
→ Hello, world!
print "That’s nice"
→ That’s nice

In order to produce all characters, the backslash \ serves as escape for the
following character. For instance, if the quote used to delimit the string literal
occurs inside the string, it must be escaped. Likewise, the backslash itself
must be escaped, as is often seen in path names:

8 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 2.3. Literals

print "A quote: \"To be, or not to be...\""
→ A quote: "To be, or not to be..."
print ’That\’s nice’
→ That’s nice
print "c:\\system\\apps"
→ c:\system\apps

There are a few characters which have a special meaning when escaped:
\f form feed (ASCII 12)
\n new line or line feed (ASCII 10)
\r carriage return (ASCII 13)
\t horizontal tab (ASCII 9)
\u hexadecimal UNICODE R© follows

print "Line1\nLine2"
→ Line1

Line2
print "Item1\tItem2"
→ Item1 Item2
print "g\u00e9nial"
→ génial

The maximum length of a string literal is 256 characters.

StringLiteral := ’"’ {Char | EscapeChar | "’"} ’"’ |
"’" {Char | EscapeChar | ’"’} "’" .

Char := (printable ISO-8859-1 char except ’, ", \)
EscapeChar := ’\’ (’n’ | ’r’ | ’t’ |
’u’ HexDigit HexDigit HexDigit HexDigit | (printable char)) .

Boolean Literals

Not surprisingly, there are just two boolean literals: true and false.

BooleanLiteral := false | true .

Function Literals

A function literal is a reference to a (already defined) function. Section 2.8
(p. 33) explains function references.

m Mobile Shell Reference Version 1.17 9

http://www.unicode.org

2. Language c© 2007 infowing AG

FunctionLiteral := ’&’ [ModulePrefix] Identifier .

Null Literal

The null literal denotes a “special” value which is different from all other
values.

NullLiteral := null .

2.4 Variables

A variable is a storage location identified by a name. Values can be assigned
to (stored in) the variable, and the value can later be retrieved by the same
name.
Variable (and function) identifiers are sequences of ordinary latin letters, dig-
its, and the underscore character.

• Identifiers must not start with a digit.

• Identifiers are case sensitive, i.e. lowercase and uppercase variants are
different.

• Keywords (see appendix A.2 (p. 161)) cannot be used as identifiers.

• The maximum length of an identifier is 64 characters.

Examples for valid identifiers:

a
Z
AvogadroConstant
avogadro_constant
_4
x1

Examples for invalid identifiers:

9a // starts with a digit
end // is a keyword
This_identifier_is_too_long_to_be_accepted_as_it_is_over_64_chars

10 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 2.5. Arrays

IdentifierChar := ’A’ to ’Z’ | ’a’ to ’z’ | ’_’ .
Identifier := IdentifierChar {IdentifierChar | Digit} .

There are two different kinds of variables:

• Global variables belong to a module (see section 2.9 (p. 34)) and exist
as long as the process containing the module exists. Global variables
can only be created within the module declaring them.

• Local variables belong to a function (see section 2.8 (p. 29)) and can
only be referenced within their function. They are different from global
variables with the same name, and exist as long as the function exe-
cutes: they are created when the function is called, and are destroyed
when the function returns. Hence, each invocation of a recursive func-
tion creates its own set of local variables. Function parameters are also
local variables .

See section 2.9 (p. 34) for examples and an explanation of module prefixes.

ModulePrefix := [ModuleName | ’.’] ’.’ .
Variable := [ModulePrefix] Identifier .
ModuleName := Identifier .

2.5 Arrays

Arrays are collections of values. The array values can be of different type,
and they can themselves again be arrays. The individual array elements are
accessed by indexing with integer numbers, starting at 0 for the first element.
Indexing requires putting the index value between brackets [], following the
array variable.
Trying to access an element with a negative or too large index throws
ExcIndexOutOfRange. Function .len (p. 50) returns the number of ele-
ments in the array.
Arrays are created by array literals, or by functions in module array (p. 55).
An array literal is a comma-separated sequence of element values between
brackets:

m Mobile Shell Reference Version 1.17 11

2. Language c© 2007 infowing AG

a=["One", "Two", "Three"];
print a[0] // first element
→ One
print a[2] // third element
→ Three
print len(a)
→ 3
print a[3] // there is no fourth element
→ ExcIndexOutOfRange thrown

Arrays in m are completely dynamic, i.e. they can grow and shrink in size.
Function .append (p. 43) appends elements to an array:

append(a, "Four", "Five");
print a
→ [One,Two,Three,Four,Five]

Associative Arrays

Array values can also be indexed by strings (“keys”), making the arrays “asso-
ciative” and facilitating many programming tasks. Setting or getting an array
element via a string key is a fast operation3. Normally, keys are case sensitive,
but array.new (p. 60) can also create arrays using case folded keys.
Unlike indexing with numbers, indexing with strings for nonexisting index
values does not throw an exception:

• Getting an element for a nonexisting key returns null.

• Setting an element for a nonexisting key appends the element to the
array.

Arrays with string keys can still be indexed using integer values.
In array literals, preceding an element value with a key and a colon adds the
corresponding key:

3Internally, keys are organized into a dynamic hash table.

12 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 2.6. Expressions

h=["Joe":150, "Jack":165, "William":180, "Averell":195];
print h["Jack"]
→ 165
print h["Lucky Luke"] // element does not exist
→ null
h["Lucky Luke"]=185; // element is appended
print h
→ [150,165,180,195,185]
print h[2]
→ 180

See also: .append (p. 43), .keys (p. 50), module array (p. 55).

Literal := SimpleLiteral | ArrayLiteral .
ArrayKey := Expression .
ArrayValue := Expression .
ArrayElement := [ArrayKey ’:’] ArrayValue .
ArrayLiteral := ’[’ [ArrayElement {’,’ ArrayElement}] ’]’ .
Designator := Variable { ’[’ Expression ’]’ } .

2.6 Expressions

Generally speaking, expressions define (arithmetic, bitwise, comparison, or
logical) operations on (variable, literal, or function result) operands.

Operands

In m, there are four types of operands:

• Designators: the operand is the value of a variable or array element,
e.g. count, list[i].

• Function Calls: the operand is the result of a function call, e.g.
io.read(f, 10), math.sin(x). Functions are explained in section
2.8 (p. 29).

• Literals: the operand is a literal, i.e. an explicit value, e.g. 42, "Hello".

• Expression: the operand is an expression in parentheses, e.g. (7.2*x),
(not exists[key]).

m Mobile Shell Reference Version 1.17 13

2. Language c© 2007 infowing AG

Operation Precedence

Each operation has a precedence defining the order in which operations are
executed: as a general rule, arithmetic and bitwise operations are executed
before comparisons, and comparisons are executed before boolean opera-
tions. Within each group, multiplicative operations have higher precedence
than additive ones. Operations of equal precedence are executed from left
to right. The order of execution can be changed by grouping subexpressions
into parentheses.

t=3; s=7; m="aha";
print t + 5*s - 2/4 // multiplicative before additive
→ 37.5
print s&4 > t|4 // bitwise before comparison
→ false
print 13>s or m>"b" // comparison before boolean ops
→ true
print (20+t)*(s-24) // parentheses change the order
→ -391

Arithmetic Operators

The arithmetic operators are (P is the precedence):
Op P Description
x+y 4 Addition.
x-y 4 Subtraction.
x*y 5 Multiplication.
x/y 5 Division.
x%y 5 Integer remainder: x - y*trunc(x/y); if y=0, throws

ExcDivideByZero.
-x 6 Change sign of x.

14 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 2.6. Expressions

print 22 / 7
→ 3.142857149
print 97 % 11
→ 9
print 97 % -11
→ 9
print -97 % 11
→ -9

Except for %, these operations never throw an exception if an invalid operation
is attempted or overflow or underflow occurs. Instead, the result becomes
(negative or positive) infinity, or zero:

x=1e200;
print x*x
→ Inf
print -2/0
→ -Inf
print 1/x/x
→ 0

Bitwise Operators

Bitwise operators work on integer numbers, treating them like binary num-
bers of 32 bits. Such operations are typically used to represent sets of binary
states (e.g. flags) in a single value, or for hardware related operations.
The bitwise operators are (P is the precedence):

Op P Description
x|y 4 Bitwise or.
xˆy 4 Bitwise exclusive or.
x&y 5 Bitwise and.
x shl y 5 Bitwise shift left.
x shr y 5 Bitwise shift right.
˜x 6 Bitwise not.

m Mobile Shell Reference Version 1.17 15

2. Language c© 2007 infowing AG

print 1|2|4|8
→ 15
print 10&(2|4)
→ 2
print 14ˆ11
→ 5
print ˜(14&11) & (14|11) // ˜(a&b) & (a|b) = aˆb
→ 5
print 13 shl 4 // 13*16
→ 208
print 341 shr 2 // trunc(341 / 4)
→ 85
print ˜0
→ -1

Concatenation Operator

The concatenation operator concatenates two strings or a string with the string
representation of another value (P is the precedence):

Op P Description
x + y 4 Concatenation: x followed by y.

Note that if neither of the two operands is a string, the two operands are
assumed to be numbers and added.

print "One" + "Two"
→ OneTwo
print "x=" + 3/4
→ x=0.75

Comparison Operators

Comparing two operands always produces a boolean value. Testing for equal-
ity and inequality works for all pairs of operands. Operands of different types
(e.g. a number and a string) are never equal.
Only numbers and strings can be ordered, i.e. compared for less or greater
than. Strings are ordered by their UNICODE R© character values, which orders
uppercase before lowercase, and does not produce a general lexical ordering.

16 m Mobile Shell Reference Version 1.17

http://www.unicode.org

c© 2007 infowing AG 2.6. Expressions

Use .collate (p. 45) to lexically compare strings.
Trying to order operands other than numbers or strings throws
ExcNotComparable.
Two arrays are only equal if they are the same array. .equal (p. 46) compares
two arrays element by element.
null is only equal to itself.
The comparison operators are (P is the precedence):

Op P Description
x = y 3 true if x is equal to y.
x # y 3 true if x is not equal to y.
x <> y 3 The same as x # y.
x < y 3 true if x is less than y.
x <= y 3 true if x is less than or equal to y.
x > y 3 true if x is greater than y.
x >= y 3 true if x is greater than or equal to y.

print 7>5
→ true
print "o" + "ne" = "one"
→ true
print "two" < "three"
→ false
print "Two" < "three" // no lexical ordering
→ true
print 14 = "a"
→ false
print 13 # "b"
→ true
print 13 < "14"
→ ExcNotComparable thrown

Boolean Operators

The boolean operators are (P is the precedence):

m Mobile Shell Reference Version 1.17 17

2. Language c© 2007 infowing AG

Op P Description
x or y 1 Logical or: true if either x or y is true, false if both

x and y are false.
x and y 2 Logical and: true if both x and y is true, false if

either x or y are false.
not x 6 Logical not: true if x is false, false if x is true.

print false or false, false or true, true or false,
true or true

→ false true true true
print false and false, false and true, true and false,
true and true

→ false false false true
print not false, not true
→ true false

The second operand is only evaluated if the first operand doesn’t already de-
termine the result. This is often useful when doing combined checks, as it
avoids evaluation of invalid expressions:

ok=m#0 and 17%m = 3 // deadly 17%0 is never evaluated

Expression := Predicate {or Predicate} .
Predicate := Comparison {and Comparison} .
Comparison :=
Sum [(’=’ | ’<>’ | ’#’ | ’<’ | ’>’ | ’<=’ | ’>=’) Sum] .

Sum := Product {(’+’ | ’-’ | ’|’ | ’ˆ’) Product} .
Product := Factor {(’*’ | ’/’ | ’%’ | ’&’ | shl | shr) Factor} .
Factor := [’-’ | ’˜’ | not]
(Designator | FunctionCall | Literal | ’(’ Expression ’)’).

2.7 Statements

Statements are the smallest unit of execution in m. Statements change values
of variables, call functions and control the flow of execution. Most of the
time, several statements are executed in a sequence, one after the other.
A sequence of statements is called a statement list. Within a statement list,
statements must be separated by a semicolon. This is the only place where m
requires a semicolon. In particular, there is no need to put a semicolon at the

18 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 2.7. Statements

end of each statement4. However, ending or preceding each statement with a
semicolon is not an error, it just produces empty statements which are ignored
during execution.
For instance, the following two code fragments are completely equivalent:

use math;
function f(x);
return x*x*math.exp(x/40);

end;
for x=0 to 10 by 0.1 do;
y=f(x);
print x,y;

end;

use math
function f(x)
return x*x*math.exp(x/40)

end
for x=0 to 10 by 0.1 do
y=f(x); // this is the only required semicolon
print x,y

end

Statement := |
Assignment | ConstAssignment | Increment | Expression |
IfStatement | WhileStatement | DoStatement | ForStatement |
BreakStatement | ReturnStatement | ThrowStatement |
TryStatement | PrintStatement .

StatementList = Statement { ’;’ Statement } .

2.7.1 Assignment

This statement type assigns the value of an expression to a variable or array
element. It also defines the variable if it didn’t occur in the preceding code
yet. A variable can be reassigned as often as required, also with values of
different types (although this is generally not considered good programming
practice).

4This minimalistic approach was chosen to reduce the number of control characters required
for a valid m script.

m Mobile Shell Reference Version 1.17 19

2. Language c© 2007 infowing AG

x = 28*3;
x = ["a", "b", "c"];
x[1] = "b2";
x[2] = null;
x["new"] = "d";
print x
→ [a,b,null,d]

When assigning an array, the array is not copied: the expression and the vari-
able or array element it is assigned to will denote the same array:

ma = ["Ma", "Dalton"];
joe = ma; // joe and ma refer to the same array
joe[0] = ["Joe"]; // this also modified ma
print ma
→ [Joe,Dalton]

array.copy (p. 56) copies an array element by element.
If a variable is being defined, i.e. didn’t occur in the preceding code, it can be
marked as constant by prefixing the assignment with const. Array elements
cannot be marked constant: a constant array can be modified after it has been
assigned to another variable.

const C = 2.997e8;
C = 4; // illegal
const A = [1, 2, 3];
A[1] = 7; // illegal
b = A;
b[1] = 7; // perfectly legal, also modifies A[1]
print A
→ [1,7,3]

Assignment := Designator ’=’ Expression .
ConstAssignment := const Variable ’=’ Expression .

2.7.2 Increment

This statement type increments or decrements a numeric variable by a nu-
meric expression (+=, -=), or simply by one (++, --). These statements are

20 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 2.7. Statements

just shorthand notations for full assignments5:
Increment Equivalent Assignment
x += expr x = x + expr

x -= expr x = x - expr

x++ x = x + 1

x-- x = x - 1

s=7;
s+=13;
s--;
print s
→ 19

Increment := Designator
(’+=’ Expression | ’-=’ Expression | ’++’ | ’--’) .

2.7.3 If Statement

An if statement executes some code depending on the value of boolean
expressions (e.g. comparisons). Its simplest form executes statements (the
print in the example) if a condition (a > 13) evaluates to true:

a=15;
if a > 13 then
print a + " is greater than 13"

end
→ 15 is greater than 13

An optional else block may contain statements which are executed if the
condition evaluates to false:

a=9;
if a > 13 then
print a + " is greater than 13"

else
print a + " is less than 13"

end
→ 9 is less than 13

5They are not completely equivalent: in s[f(x)]+=3, f(x) is evaluated only once,
whereas in s[f(x)]=s[f(x)]+3, f(x) is evaluated twice.

m Mobile Shell Reference Version 1.17 21

2. Language c© 2007 infowing AG

To test for more than just two alternatives, an arbitrary number of elsif
blocks can be added. These must occur after the if/then and before the
(optional) else block:

a=13;
if a > 14 then
print a + " is greater than 14"

elsif a < 13 then
print a + " is less than 13"

elsif a = 13 then
print a + " is equal to 13"

else
print a + " must be 14"

end
→ 13 is equal to 13

If any of the conditions evaluates to true, the remaining conditions are not
evaluated.
Throws ExcNotBoolean if any of the evaluated conditions is not boolean.

IfStatement := if Expression then StatementList
{elsif Expression then StatementList}
[else StatementList]
end .

2.7.4 While Statement

The while statement repeats some code as long as a condition evaluates to
true. The condition is tested before each repetition.

a=[430, 241, 187, 53, -1, 17]; s=0;
while i<len(a) and a[i]>=0 do
s += a[i]; i++

end;
print i, s
→ 4 911

Throws ExcNotBoolean if the condition is not boolean.

WhileStatement := while Expression do StatementList end .

22 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 2.7. Statements

2.7.5 Do-Until Statement

The do statement repeats some code until a condition evaluates to true. The
condition is tested after each repetition.

x=2; y=x;
do
y0=y; y=(y+x/y)/2

until y>=y0;
print y, y*y
→ 1.4142135624 2

Throws ExcNotBoolean if the condition is not boolean.

DoStatement := do StatementList until Expression .

2.7.6 For Statement

The for statement lets an index variable iterate through a range of numbers or
through the elements of an array, and executes some code for each value. The
index variable must be a simple variable, either local in the current function
or global in the current module. It cannot be an array element or a variable in
another module.

• The for loop iterating through a range of numbers looks as follows:

for index=StartExpr to EndExpr [by IncrExpr] do
statements

end

The range is defined by StartExpr and EndExpr, and an optional
IncrExpr defining the amount by which the variable is incremented
after each iteration. IncrExpr defaults to 1.

All three expressions are evaluated only once, before the loop is en-
tered.

The loop exits if index > EndExpr (if IncrExpr > 0), or if index
< EndExpr (if IncrExpr <= 0).

m Mobile Shell Reference Version 1.17 23

2. Language c© 2007 infowing AG

for x=5 to 6 by 0.25 do
print x*x

end
→ 25

27.5625
30.25
33.0625
36

A for loop over a range is equivalent to the following while loop:

index=StartExpr; e=EndExpr; d=IncrExpr;
while d>0 and index <= e or d<=0 and index >= e do
statements;
index += d

end

Care must be taken when using for loops with fractional numbers:
rounding errors may lead to surprising results:

for i=5 to 6 by 0.2 do
print i

end
→ 5

5.2
5.4
5.6
5.8

print i-6
→ 8.881784E-16

• The for loop iterating through the elements of an array looks as fol-
lows:

for index in ArrayExpr do
statements

end

The array is defined by ArrayExpr. index iterates through all ele-
ments of the array, starting at index 0 and ending with the last element
(index len(ArrayExpr)-1).

24 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 2.7. Statements

a=[430, 241, 187, 53, -1, 17]; s=0;
for x in a do
s += x

end;
print s
→ 927

A for loop over an array is equivalent to the following while loop:

a=ArrayExpr; i=0;
while i<len(a) do
index = a[i];
statements;
i++

end

ForStatement := for IndexVariable
(= Expression to Expression [by Expression] | in Expression)
do StatementList end .

IndexVariable := Identifier .

2.7.7 Case Statement

The case statement executes a sequence of statements depending on the
value of an expression matching the tag or tags of this sequence. It looks
as follows:

case Expression
in TagExpr1:
statements1
in TagExpr2a, TagExpr2b:
statements2

else
statements3

end

This case statement is equivalent to the following if statement:

m Mobile Shell Reference Version 1.17 25

2. Language c© 2007 infowing AG

x=Expression;
if x=TagExpr1 then
statements1

elsif x=TagExpr2a or x=TagExpr2b then
statements2

else
statements3

end

Expression is evaluated only once.
The tags (TagExpr1, TagExpr2a,...) are evaluated when they are tested.
Once a matching tag has been found, the remaining tags are not evaluated.
Equality of expression and tag is tested using the = operator (see section 2.6
(p. 16)). Arrays are thus not compared elementwise, and string comparison is
case sensitive.
The following example prints a different message for different values of i:

for i=1 to 10 do
case i
in 1:
print i,"is somewhat prime"
in 2, 3, 5, 7:
print i,"is prime"

else
print i,"is not prime"

end
end
→ 1 is somewhat prime

2 is prime
3 is prime
4 is not prime
5 is prime
6 is not prime
7 is prime
8 is not prime
9 is not prime
10 is not prime

26 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 2.7. Statements

CaseStatement := case Expression
{ in TagList ":" StatementList }
[else StatementList] end .

TagList := Expression { "," Expression } .

2.7.8 Break Statement

The break statement exits from the loop (while, do-until, for) contain-
ing it, and continues execution after the end of the loop.

x=-3;
while true do
if x<0 then break end;
y=x; x=x/2+1/x;
if x>=y then break end

end;
print x, x*x
→ -3 9

break always exits the innermost loop containing it. Breaking out of an outer
loop is not possible.

BreakStatement := break .

2.7.9 Return Statement

The return statement returns the value of an expression as a function result.
Outside a function, it ends execution of the module’s body; the return value
is discarded.
See section 2.8 (p. 29) for examples.

ReturnStatement := return Expression .

2.7.10 print Statement

The print statement provides a simple way of producing output. It writes
a line with zero, one or several expressions to the console. The expressions
are separated by single spaces. print without expressions just outputs a new

m Mobile Shell Reference Version 1.17 27

2. Language c© 2007 infowing AG

line.

print "odd:",3/7
→ odd: 0.4285714286
print
→

Expressions are formatted depending on their type:

• A Number is printed as string of length 12 or less (and rounded, if
necessary). If the value cannot be represented within 12 characters,
scientific representation is chosen.

print 13.5
→ 13.5
print 3e11
→ 300000000000
print -3e11; // -300000000000 has 13 characters
→ -3E+11

• A String is printed as is.

print "Hello,", ’world!’
→ Hello, world!

• A Boolean is printed as "true" or "false":

print 1 < 3
→ true

• An Array is printed elementwise, up to a length of 128. Elements which
are themselves arrays are printed as Array<len>.

28 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 2.8. Functions

a=[];
for i=1 to 10 do append(a, i) end;
print a
→ [1,2,3,4,5,6,7,8,9,10]
a[0]=a;
print a
→ [Array<10>,2,3,4,5,6,7,8,9,10]
for i=11 to 100 do append(a, i) end;
print a
→ [Array<100>,2,3,4,5,6,7,8,9,10,11,12,13,14,

15,16,17,18,19,20,21,22,23,24,25,26,27,28,
29,30,31,32,33,34,35,36,37,...<100>]

• A Function Reference is printed as &func<mod,func>, and as such of
little interest to the user (mod and func are indices into internal module
and function tables).

• The Null value is printed as null.

• A Native Object is printed as type@address. type defines the ob-
ject type, address is the location of the underlying native object in
memory.

f=io.create("sample.xml");
print f
→ stream@41255c

For finer control over output formatting, see .str (p. 53) and module io

(p. 111).

PrintStatement := ’print’ [Expression { ’,’ Expression }] .

2.8 Functions

Functions are a way to write repeatedly occuring computations only once, but
use them wherever needed. They also help in structuring longer scripts into
smaller, easily understandable units. By putting often occuring functions into
separate modules (see section 2.9 (p. 34)), function libraries can be created.

m Mobile Shell Reference Version 1.17 29

2. Language c© 2007 infowing AG

Functions normally have a set of parameters as input and return a single func-
tion result as output. Since the function result can be an array, an arbitrary
number of values can be returned.
The function is left by returning a value with a return statement. If the
function is left by reaching its end, null is returned.
The following example declares a function sqrt computing the square root
of a number x greater than or equal to 1, then calls it with parameters x=2
and x=9:

function sqrt(x)
y=x;
do
y0=y; y=(y+x/y)/2

until y>=y0;
return y

end // of function sqrt

print sqrt(2), sqrt(9)
→ 1.4142135624 3

This is quite a simple function with a single parameter x and a simple function
result (the value of y).
Multiple parameters are separated by commas. The following function find

finds the index of the first element in an array a with a value equal to x (there
is a standard function for this: array.index (p. 57)).

function find(a, x)
i=0;
while i<len(a) and a[i]#x do
i++

end;
return i

end

print find([9, 11, 13], 11)
→ 1
print find([9, 11, 13], 8)
→ 3

A function can be recursive, i.e. can call itself: the following function clone

30 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 2.8. Functions

returns a full copy of its parameter t. It uses array.copy (p. 56) to copy all
the elements, and .isarray (p. 48) to test whether t is an array.

function clone(t)
if isarray(t) then
c=array.copy(t);
// recursively clone the elements
for i=0 to len(t)-1 do c[i] = clone(t[i]) end;
return c

else
return t

end
end

If a function returns an array, the call can be followed by expressions in brack-
ets accessing certain elements:

a=[’one’:1, ’two’:2, ’three’:3];
print keys(a)[2]
→ three

Optional Parameters

Optional parameters are parameters with a default value: if the parameter is
omitted, the default value is assumed. The expression to compute the default
value can be any expression which is valid in the global context (i.e. it cannot
use a preceding function parameter). It is evaluated when the function is
called, not when the function is declared.
When calling a function, the number of actual parameters must not be less
than the number of mandatory parameters in the declaration of the function,
and not be greater than the total number of declared parameters.
The following rewrites function find by adding an optional parameter start
indicating the position to start searching at. The default value of start is 0,
so calling find with only two parameters produces exactly the same result as
before:

m Mobile Shell Reference Version 1.17 31

2. Language c© 2007 infowing AG

function find(a, x, start=0)
while start<len(a) and a[start]#x do
start++

end;
return start

end

print find([9, 11, 13], 11)
→ 1
print find([9, 11, 13], 11, 2) // start=2
→ 3

Functions with optional parameters can have options for simplified syntax in
interactive use (see section 4.1 (p. 149)). Options are simply single character
names for optional parameters.

function grow(years,interest=2) /i:interest
a=1;
while years>0 do
a+=a*interest/100; years--

end;
return a

end

grow(10,5)
→ 1.21899442
grow/i=5 10 // works only in interactive shells
→ 1.6288946268

Forward Declaration

Functions must be declared before they can be used. This means that if two
functions call each other, at least one must be declared with forward and
implemented later. In the following example, either f or g must be forward
declared, since function f calls function g and vice versa:

32 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 2.8. Functions

function g(x, a=3.2) forward // g is made known

function f(x)
if x<3 then
return g(x*x) // g is called

else
return x+2

end
end

function g(x, a=3.2) // here g is declared
return f(x+a)

end

The default values of the optional parameters of the forward declared func-
tion are only used to mark optional parameters, their values are ignored. The
default values are taken from the function implementation. The number of
mandatory and optional parameters in forward declaration and implementa-
tion must match.

Function References

Function references allow to change the function called in an expression dur-
ing the execution of a script: when a function reference is assigned to a vari-
able or a parameter, the function can be called via the variable. The reference
of a function is obtained by prefixing it with an ampersand character &:

f=&lower; // f now references the lower function
print f("Hello") // a call to lower
→ hello
f=&upper; // f now references the upper function
print f("Hello") // a call to upper
→ HELLO

Function references are often used to pass a function as a parameter to another
function: the function integ approximates the integral of f from a to b:

m Mobile Shell Reference Version 1.17 33

2. Language c© 2007 infowing AG

function integ(f, a, b, n=100)
s=(f(a)+f(b))/2; h=(b-a)/n;
for i=1 to n-1 do
s+=f(a+i*h)

end;
return s*h

end

function inv(x) return 1/x end
print integ(&inv, 1, 2)
→ 0.6931534305
print integ(&math.sin, 0, math.pi/2)
→ 0.9999794382
print integ(&math.sin, 0, math.pi/2, 10000)
→ 0.9999999979

FunctionDeclaration := function Identifier ’(’ [ParameterList] ’)’
(forward | {FunctionOption} StatementList end) .

ParameterList := (MandatoryParameter {’,’ MandatoryParameter} |
OptionalParameter) {’,’ OptionalParameter} .

MandatoryParameter := Identifier .
OptionalParameter := Identifier ’=’ Expression .
FunctionOption := ’/’ OptionName ’:’ ParameterName .
OptionName := IdentifierChar | Digit .
ParameterName := Identifier .

ActualParameterList := Expression {’,’ Expression} .
FunctionCall :=
[ModulePrefix] Identifier ’(’ [ActualParameterList] ’)’
{ ’[’ Expression ’]’ } .

2.9 Modules

A module in m is a script (a text file) which can be loaded by other scripts,
giving access to the functions and variables defined in the module.
Modules serve two purposes:

• They help in structuring complex scripts and make them easier to un-
derstand and maintain.

• They offer a way of extending the functionality of m by adding new
functions which can then be used by all scripts or interactive m ses-
sions. Entire libraries of often needed functions can be created that

34 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 2.9. Modules

way. The standard library of m described in the next chapter is orga-
nized into modules.

To load a module, a use clause is required:

use ModuleName1, ModuleName2, ...

This loads the modules ModuleName1, ModuleName2 and so on, and initial-
izes them, i.e. executes their main code . Each module is only initialized once
per process, even if it is loaded several times by different modules.
Module names are not case sensitive, since they are related to file names on
the underlying operating system.

use System // load module "system"
print System.appdir; // this will work
print system.appdir // this is the same

An alias name can be used in addition to the module name to denote the
module, e.g. to abbreviate a long module name. Alias names are local to
the module containing the use clause. Like module names, they are not case
sensitive:

use ModuleName as AliasName

As an example, consider the following module accounts maintaining a list
of accounts and allowing transfers between them:

S=[]; // initialization of the module
function get(nr)
x=accounts.S[nr];
// all accounts start at zero
if x=null then x=0 end;
return x

end
function xfer(f, t, x)
..S[f]=get(f)-x;
..S[t]=get(t)+x

end

Within the functions, the global variable S must be prefixed by the module
name (accounts.S), or by the double dot prefix indicating the current mod-
ule (..S).

m Mobile Shell Reference Version 1.17 35

2. Language c© 2007 infowing AG

The module can then be used as follows:

// load the module and name it ’acc’.
use accounts as acc
// transfer money out of the blue to the bank
acc.xfer(’blue’, ’bank’, 100000);
print acc.get(’bank’)
→ 100000
// transfer money from the bank to the Daltons
acc.xfer(’bank’, ’Daltons’, 10000);
print acc.get(’bank’)
→ 90000
// show all accounts
print acc.S
→ [-100000, 90000, 10000]

Module Prefixes

Global variables and functions must normally be prefixed by the name of the
module defining them (or the corresponding alias), and a dot. The prefix for
the main script and the builtin functions and variables is just a dot, without a
name.
Within a module, global variables and functions of the same module can be
prefixed by a double dot ..: in the code for module accounts above, ..S
denotes the same variable as accounts.S.
The prefixing is not always required when the variable or function is ref-
erenced in the module containing it. Furthermore, functions defined in the
main script or builtin standard functions only need a prefix if a function with
the same name exists in the current module. The following table summarizes
how variables and functions without module prefix are interpreted:

Variable x Function f

main module global .x .f

function in main module local x .f

module M global M.x M.f if it exists, .f otherwise
function in module M local x M.f if it exists, .f otherwise

36 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 2.9. Modules

Module Version

Each module has a version, which is a number in the form major.minor; the
minor component by convention has a 1/100th granularity.
The module version is a special variable version, which can only be mod-
ified in the module itself by assigning a number literal to it. If no number
has been assigned, the version is 0.0. The version of an uncorrectly loaded
optional module (see below) is null.
Source of module client:

version=1.23

use client
// require at least version 1.20 of client module
if client.version>=1.20 then
...

end

The version of the builtin module is always the version of the m application.
See also .version (p. 55).

Optional Modules

Not all devices support all modules, or a module may simply not be installed
on a device. To cope with these cases in the code, a module can be loaded in
a use clause with the try prefix:

use try ModuleName

Loading a module with the try prefix has the following effects:

• If the module and all the modules it uses are correctly loaded, the
result is almost the same as without try. However, a reference
to an undefined function or variable of the module will not be de-
tected until the code reaches the corresponding statement and throws
ErrNotAvailable. This allows to run code even if some functions or
variables of a module do not exist.

• If the module ModuleName itself or one of the modules it uses is not

m Mobile Shell Reference Version 1.17 37

2. Language c© 2007 infowing AG

found or cannot be loaded, no error is marked. However, all references
to its variables and functions will result in ErrNotAvailable being
thrown; only the module’s version variable is accessible and will re-
turn null.

use try nirvana
nirvana.f(1, 2)
→ ErrNotAvailable thrown
print nirvana.val
→ ErrNotAvailable thrown
// inirvana.version is null: the module cannot be used
print nirvana.version
→ null

use try math
// there is no sinh function in module math
print math.sinh(1.2)
→ ErrNotAvailable thrown
// math.version is not null: the module can be used
print math.version
→ 1.08

ModuleImportList := use ModuleImport { ’,’ ModuleImport } .
ModuleImport := [try] ModuleName [as AliasName] .
AliasName := Identifier .

2.10 Exceptions

An exception is the result of an attempt to perform an invalid operation. By
default, exceptions result in a popup window showing the exception message
text.
An exception thrown by m will always have the following format:

ExceptionFormat := tag ’:’ message

The tag is always an (english) identifier, and independent of the language
chosen when installing m. The message however depends on the language.
See section A.1 (p. 157) for a list of m exception tags.

38 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 2.10. Exceptions

Catching Exceptions

Exceptions can also be handled (“catched”) in m itself:

try
// code potentially throwing exceptions

catch exc by
// code handling the exception exc

end

The result of such a try block is the following:

• If the code between try and catch does not throw any exception, the
code between catch and end will never be executed.

• If the code between try and catch does throw an exception, the ex-
ception will be assigned to the variable denoted by catch and the fol-
lowing code will be executed.

In the following example, a[1] tries to access an non-existing element. m
throws an ExcIndexOutOfRange, which is catched and simply printed:

try
a=[12];
print a[1]

catch e by
print "Got", e

end
→ Got ExcIndexOutOfRange: Array index is out of range

Try blocks can be nested to any depth (as long as the required memory is
available).

TryStatement := try StatementList
catch ExceptionVariable by StatementList end .

ExceptionVariable := Identifier .

Throwing Exceptions

Exceptions can also be thrown explicitly in the code:

throw expression

m Mobile Shell Reference Version 1.17 39

2. Language c© 2007 infowing AG

This will evaluate expression and use it as exception message. In the fol-
lowing example, an exception with the message “state.dat does not exist” will
be thrown if this file does not exist.

if not files.exists("state.dat") then
throw "state.dat does not exist"

end

ThrowStatement := throw Expression .

2.11 Source Structure

After introducing all elements of the m language, the complete structure of
an m source can be defined:

MSource := {ModuleImport | FunctionDeclaration | StatementList} .

The StatementLists (there can be several) are the “main code” of the script
which is executed directly. In a module, this corresponds to the module ini-
tialization code which is executed the first time the module occurs in a use

clause.

40 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG

3. Library
The m library contains a large number of functions, organized into modules.
Some functions are the standard functions you expect in any serious program-
ming language. Others are very specific to the typical capabilities of a smart
phone.
The following sections describe the modules which are always available. New
modules can be added by yourself or by a third party, either written in m, or
written for the native platform. For Symbian OS, this is typically a dynamic
library.
See section 2.9 (p. 34) for more information on using and writing modules.
Just a reminder: to use any of the standard modules, you have to load it via
the use clause:

use math
print math.random()
→ 0.1488330803

3.1 Path and File Names

A complete file name in m (and in Symbian OS) consists of a drive, a di-
rectory path, and the file name with extension. The drive is followed by a
colon; drive, directories and file name are separated by backslashes (\). Since
the backslash is also the escape character in strings, each backslash must be
entered as two backslashes (unless simplified interactive syntax is used, see
section 4.1 (p. 149)):

path="c:\\documents\\mShell\\script.m";

By convention, a directory name always ends with a backslash, allowing im-
mediate differentation between directory names and file names.
To avoid the need for a fully specified file name, each process in m maintains

m Mobile Shell Reference Version 1.17 41

http://www.symbian.com
http://www.symbian.com

3. Library c© 2007 infowing AG

a current directory (see .cd (p. 43)). Unlike in DOS/Windows, which main-
tains a current directory for each drive, there is only one current directory in
m, which always includes the drive.
All functions taking file or directory names as arguments therefore accept
absolute, drive-relative or relative file names:

• Absolute file names start with the drive letter. The directory path al-
ways starts from the root of the drive, even if the first backslash is
missing.

cd("c:documents");
print cd()
→ c:\documents\

• Drive-relative file names start with a backslash. They are always rela-
tive to the root of the current drive (which is part of the current direc-
tory).

cd("\\documents");
print cd()
→ c:\documents\

• Relative file names start with a directory name, or simply a file name.
They are always relative to the current directory.

cd("mShell");
print cd()
→ c:\documents\mShell\

m also interprets two special directory names:

• A single dot refers to the current directory.

• A single dot refers to the preceding directory.

Single and double dots can occur anywhere in the directory path.

42 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.2. Builtin Functions and Constants

cd("c:\\documents");
cd(".\\mShell"); // . refers to c:\documents
print cd()
→ c:\documents\mShell\
cd("..\\Jotter"); // .. refers to c:\documents
print cd()
→ c:\documents\Jotter\

3.2 Builtin Functions and Constants

The functions listed here are the standard m functions available without im-
porting any module. They can be called without a module or alias prefix, or
with an empty prefix (a dot).

print date();
print .date()

Both statements have the same effect.

.append

• function append(array, element, ...)→ null

Append one or more elements to the the end of array. The length of array
is increased by the number of elements appended.

arr=[];
append(arr, 17, "x");
print arr
→ [17,x]

.cd

• function cd()→ String

• function cd(newpath)→ String

Gets and sets the current (default) directory. This is the directory all file or
directory operations relate to. See also section 3.1 (p. 41).

m Mobile Shell Reference Version 1.17 43

3. Library c© 2007 infowing AG

Without an argument, cd returns the current directory without modifying it.
With a single argument, it changes the current directory to newpath and re-
turns the previously set current directory. newpath can be absolute, or rela-
tive to the current directory.

cd("c:\\");
print cd("system")
→ c:\
print cd("apps")
→ c:\system\
print cd()
→ c:\system\apps\

See also: files.mkdir (p. 82), files.rmdir (p. 83)

.char

• function char(array)→ String

Converts the array of numbers array to a string, interpreting each number as
a UNICODE R© BMP character code. The codes must be numbers between 0
and 216 − 1 = 65535.

print char([72,101,108,108,111])
→ Hello

See also: .code (p. 45)

.cls

• function cls()→ null

Clears the screen, deleting all console output produced so far.

cls()

44 m Mobile Shell Reference Version 1.17

http://www.unicode.org

c© 2007 infowing AG 3.2. Builtin Functions and Constants

.code

• function code(text)→ Array

• function code(text, pos)→ Number

With a single argument, converts text to an array containing the
UNICODE R© number for each character. With two arguments, returns the
code for the character at position pos of text.

print code("Hello")
→ [72,101,108,108,111]
print code("Hello", 1)
→ 101

See also: .char (p. 44).

.collate

• function collate(s1, s2)→ Number

Compare the two strings s1 and s2, correctly ordering accents and umlauts
depending on the current locale. Returns a negative number if s1 < s2, zero
if s1 = s2, a positive number if s1 > s2.

// Flüge comes before Flugzeug in lexical ordering
print collate("Flüge", "Flugzeug")
→ -1
// simple raw ordering produces the wrong result
print "Flüge" < "Flugzeug"
→ false

See also: constant array.collate (p. 63).

.date

• function date()→ String

Get the current local date and time in the format YYYY-MM-DD hh:mm:ss.
See also module time (p. 131).

print date()
→ 2005-02-21 12:18:55

m Mobile Shell Reference Version 1.17 45

http://www.unicode.org

3. Library c© 2007 infowing AG

.equal

• function equal(a, b)→ Boolean

Compares two values a and b for equality and returns true if they are equal,
false if they are not equal. Unlike the m language = operator, this function
compares arrays elementwise: two arrays are identical if they have the same
length and all their elements are equal.

a=[1, 2, [3, 4]]
b=a;
print a=b, equal(a, b)
→ true true
b=[1, 2, [3, 4]];
print a=b, equal(a, b)
→ false true

Note that the function will crash m if you pass two identical recursive arrays
for which equality or inequality cannot be determined.

a=[0]; a[0]=a;
b=[0]; b[0]=b;
equal(a, b) // this will crash m

.delete

• function delete(text, start)→ String

• function delete(text, start, length)→ String

Deletes the substring from text from position start, either to the end of
text, or the next length characters. The first character has position 0.
Throws ExcStringPosOutOfRange if not 0 <= start <= len(text),
or if not 0 <= length <= len(text) - start.

print delete("Hello world!", 6)
→ Hello
print substr("Hello world!", 3, 5)
→ Helrld!

See also: .substr (p. 54)

46 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.2. Builtin Functions and Constants

.hexnum

• function hexnum(text)→ Number

Converts the string text representing a hexadecimal integer value into the
value. The value can be signed. Uppercase and lowercase digits are allowed,
and leading and trailing blanks are ignored.

print hexnum("1fff");
→ 8191
print hexnum(" -ABACADA ");
→ -180013786

See also: .num (p. 51)

.hexstr

• function hexstr(number, width=0)→ String

Formats number into an integer hexadecimal value. If necessary, zeros are
added before the string until its length is at least width.

print hexstr(8191)
→ 1fff
print hexstr(-180013786, 12)
→ -0000abacada

See also: .str (p. 53)

.index

• function index(text, pattern, start=0, folded=false)→
Number

Searches the string text for the first occurence of the string pattern at or
after start and returns the position. If pattern does not occur, -1 is returned.
If folded=true, the comparison between text and pattern ignores case.
Throws ExcStringPosOutOfRange if not 0 <= start <= len(text).

m Mobile Shell Reference Version 1.17 47

3. Library c© 2007 infowing AG

print index("To be, or not to be", "to be")
→ 14
print index("To be, or not to be", "to be", 0, true)
→ 0
print index("To be, or not to be", "to be", 1, true)
→ 14
print index("To be, or not to be", "to be or not")
→ -1

See also: .rindex (p. 51)

.isarray

• function isarray(expression)→ Boolean

Returns true if expression is an array, false if it is any other type.

print isarray([])
→ true
print isarray("String")
→ false

.isboolean

• function isboolean(expression)→ Boolean

Returns true if expression is a boolean (i.e. true or false), false if it
is any other type.

print isboolean(4 > 5)
→ true
print isboolean(4+5)
→ false

.isfunction

• function isfunction(expression)→ Boolean

Returns true if expression is a function reference, false if it is any other
type.

48 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.2. Builtin Functions and Constants

print isfunction(&cd)
→ true
print isfunction(cd())
→ false

.isnative

• function isnative(expression)→ Boolean

Returns true if expression is a native object, false if it is any other type.

print isnative(io.create("sample.xml"))
→ true
print isnative([])
→ false

.isnum

• function isnum(expression)→ Boolean

Returns true if expression is a number, false if it is any other type.

print isnum(13.26)
→ true
print isnum("13.26")
→ false
print isnum(num("13.26"))
→ true

.isstr

• function isstr(expression)→ Boolean

Returns true if expression is a string, false if it is any other type.

print isstr("Hello")
→ true
print isstr(null)
→ false

m Mobile Shell Reference Version 1.17 49

3. Library c© 2007 infowing AG

.keys

• function keys(array)→ Array

Returns an array of length len(array), with each element set to the string
key of the element at this position in array, or set to null if the element at
this position has no key.

a=["one":1, "two":2, 3, "four":4, 5];
print keys(a)
→ ["one", "two", null, "four", null]

.len

• function len(array)→ Integer

• function len(text)→ Integer

Returns the length (number of elements) of the array array, or the length
(number of characters) of the string text.

print len("Hello")
→ 5
print len("")
→ 0
print len([7, 8, 9])
→ 3
print len([])
→ 0

.lower

• function lower(text)→ String

Returns a copy of text, with all uppercase characters converted to their low-
ercase equivalent.

print lower("Hello")
→ hello
print lower("WATCH OUT!")
→ watch out!

50 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.2. Builtin Functions and Constants

.num

• function num(text)→ Number

Converts the string text representing a numeric value into the value. The
syntax for the number is the same as for numeric literals (see 2.3 (p. 7)).
Leading and trailing blanks are ignored.

print 21+num(’21’)
→ 42
print num(" -15.8e4 ")
→ -158000

.replace

• function replace(text, old, new)→ String

Replaces all occurences of old in text by new, and returns the string with
replacements made. old and new need not have the same length.

print replace("Hello world!", "l", "ll")
→ Hellllo worlld!"
print replace("Hello world!", "l", "")
→ Heo word!"

.rindex

• function rindex(text, pattern, start=len(text)-1,
folded=false)→ Number

Searches the string text for the last occurence of the string text at or before
start and returns the position. If pattern does not occur, -1 is returned. If
folded=true, the comparison between text and pattern ignores case.
Throws ExcStringPosOutOfRange if not -1 <= start < len(text).

m Mobile Shell Reference Version 1.17 51

3. Library c© 2007 infowing AG

print rindex("To be, or not to be", "To be")
→ 0
print rindex("To be, or not to be", "To be", 18, true)
→ 14
print rindex("To be, or not to be", "To be", 13, true)
→ 0
print rindex("To be, or not to be", "to be or not")
→ -1

See also: .index (p. 47)

.sleep

• function sleep(microseconds)→ null

Pauses execution for (at least) the number of microseconds (1/1000 of a sec-
ond) before returning. If microseconds is negative or zero, execution con-
tinues immediately, but other m processes immediately get a chance to run,
before they are preempted by the scheduler.

sleep(500) // wait for 1/2 s

.split

• function split(text)→ Array

• function split(text, separator)→ Array

With one argument, splits text into words separated by any amount of white
space1.
With two arguments, splits text into substrings at each occurrence of
separator. separator can be of any length.

print split(" To be, or not to be?")
→ [To,be,,or,not,to,be?]
print split("Line 1

Line 3
", "
")
→ [Line 1,,Line 3,]

1White space: a sequence of characters equal to or less than space. This includes tab and
newline.

52 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.2. Builtin Functions and Constants

.str

• function str(expression, width=0)→ String

• function str(number, width, decimals)→ String

Converts an expression or a number to string:

• The first form converts an expression to a string, using the same rules
as the print statement (see 2.7.10 (p. 27)):

print str(1 < 3)
→ true

– If width >= 0, spaces are added before the string until its length
is at least width. The result is thus right adjusted.

print str(1 < 3, 8)
→ true

– If width < 0, spaces are added after the string until its length is
at least -width. The result is thus left adjusted.

print str("hello", -8) + "world"
→ hello world

• The second form formats number into a fixed or floating point repre-
sentation, depending on decimals:

– If decimals = 0, the number is represented without decimal
positions and without decimal point, as if it were an integer:

print str(10000/7, 6, 0)
→ 1429

– If decimals > 0, the number is represented with decimal point
and the given number of decimal positions:

print str(10000/7, 0, 3)
→ 1428.571

– If decimals < 0, the number is represented with floating point
and the given number of significant digits:

m Mobile Shell Reference Version 1.17 53

3. Library c© 2007 infowing AG

print str(10000/7, 10, -3)
→ 1.43E+03
print str(10000/7, 0, -1)
→ 1E+03

.substr

• function substr(text, start)→ String

• function substr(text, start, length)→ String

Extracts a substring from text from position start, either to the end of
text, or the next length characters. The first character has position 0.
Throws ExcStringPosOutOfRange if not 0 <= start <= len(text),
or if not 0 <= length <= len(text) - start.

print substr("Hello world!", 6)
→ world!
print substr("Hello world!", 3, 5)
→ lo wo

.trim

• function trim(text)→ String

Returns a copy of text, with leading and trailing blanks removed.

print trim("Hello")
→ Hello
print trim(" world! ")
→ world!

.upper

• function upper(text)→ String

Returns a copy of text, with all lowercase characters converted to their up-
percase equivalent.

54 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.3. Module array: Array Functions

print lower("Hello")
→ HELLO
print lower("watch out!")
→ WATCH OUT!

Constants

• const version = 1.17

The current version of m. Of course, for a different version this number will
be different from 1.17.

3.3 Module array: Array Functions

This module provides utility functions to create, manipulate, search and sort
arrays.

array.concat

• function concat(array1, array2, ...)→ Array

Concatenates all arguments to a single array and returns it. Any keys of the
arrays are copied to the resulting array. If the same key occurs more than
once, the key will reference the element where it occurred last.

a=[1, 2, "three":3, 4, 5];
b=[7, "eight":8];
c=array.concat(a, b, [9]);
print c, c["eight"]
→ [1,2,3,4,5,7,8,9] 8
print keys(c)
→ [null,null,three,null,null,null,eight,null]

m Mobile Shell Reference Version 1.17 55

3. Library c© 2007 infowing AG

array.copy

• function copy(array, start=0)→ Array

• function copy(array, start, length)→ Array

• function copy(array, indices)→ Array

Extracts a copy of array:

• from element start to the end of the array, or length elements,

• if indices is an array, the elements with indices in indices.

Only the array is copied, its elements remain the same (this is only relevant if
the elements are themselves arrays).
Any keys of the copied elements are also copied to the new array.
Throws ExcIndexOutOfRange if not 0 <= start <= len(array),
or if not 0 <= length <= len(array) - start, or if any 0 <=

indices[i] < len(array).

a=[1, 2, "three":3, 4, 5];
print array.copy(a)
→ [1,2,3,4,5]
print array.copy(a, 3)
→ [4,5]
b=array.copy(a, 1, 3);
print b, b["three"]
→ [2,3,4] 3
print array.copy(a, [3, 2])
→ [4, 3]

array.create

• function create(len, initval)→ Array

• function create(len1, len2, ..., lenn, initval)→ Array

Creates a one-dimensional array of length len, or a multi-dimensional array
of arrays, with dimensions len1 x len2 x ... x lenn, with all array
elements set to initval.

56 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.3. Module array: Array Functions

a=array.create(3,3,0); // create a 3x3 matrix of zeros
print a
→ [[0,0,0],[0,0,0],[0,0,0]]
b=array.create(10, "x"); // create an array of ten "x"
print b
→ [x,x,x,x,x,x,x,x,x,x]

array.fill

• function fill(array, val, start=0)→ null

• function fill(array, val, start, length)→ null

Sets the elements of array array to val, from element start to the end of
the array, or length elements.
Throws ExcIndexOutOfRange if not 0 <= start <= len(array), or if
not 0 <= length <= len(array) - start.

a=[1,2,3,4,5];
array.fill(a, 0);
print a
→ [0,0,0,0,0]
array.fill(a, false, 1, 2);
print a
→ [0,false,false,0,0]

array.index

• function index(array, val, start=0)→ Number

Searches the array array for the first element at or after start equal to val,
and returns the index of the element. If there is no such element, returns -1.
Elements are compared using the builtin function .equal (p. 46).
Throws ExcIndexOutOfRange if not 0 <= start <= len(array).

m Mobile Shell Reference Version 1.17 57

3. Library c© 2007 infowing AG

a=["To", "be", "or", "not", "to", "be"];
print array.index(a, "be")
→ 1
print array.index(a, "Be")
→ -1
print array.index(a, "be", 2)
→ 5
print array.index(a, "be", 6)
→ -1

See also: array.rindex (p. 61)

array.insert

• function insert(array, pos, element, ...)→ null

Inserts one or more elements into array before position pos. The elements
at or after pos are moved up. The length of array is increased by the number
of elements inserted.
Throws ExcIndexOutOfRange if not 0 <= pos <= len(array).

arr=[29, 18, -4];
array.insert(arr, 2, 17, "x");
print arr
→ [29,18,17,x,-4]

See also: .append (p. 43)

array.isort

• function isort(array, desc=false, mode=raw,
ind=[0,1,...,len(array)-1])→ Array

Sorts the indices ind such that the elements array[ind[i]] are sorted in
ascending order, or in descending order if desc=true, and returns the sorted
indices.
String comparisons are performed according to mode2 (one of array.raw,
array.fold, array.collate).

2This sort is always stable.

58 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.3. Module array: Array Functions

Throws ExcNotComparable if the elements of interest in array are not all
numbers or not all strings.
Throws ExcIndexOutOfRange if any element of ind does not properly in-
dex into array.
See also: array.sort (p. 62), array.copy (p. 56)

a=[412,-302,18,2077,22,149,18];
ind=array.isort(a);
print ind
→ [1,2,6,4,5,0,3]
print array.copy(a, ind)
→ [-302,18,18,22,149,412,2077]
print array.isort(a, true)
→ [3,0,5,4,2,6,1]
a=["To", "be", "or", "not", "to", "be"];
print array.isort(a)
→ [0,1,5,3,2,4]
print array.isort(a, false, array.fold)
→ [1,5,3,2,0,4]
print array.isort(a, false, array.fold, [1,2,3])
→ [1,3,2]

array.leindex

• function leindex(arr, val, mode=raw)→ Number

Searches the sorted array arr for the first index of the largest element
less than or equal to val. Comparisons use the specified mode (one of
array.raw (p. 63), array.fold, array.collate).
Returns -1 if all elements of arr are larger than val.
Since the array is sorted, searching can be performed much more efficiently
than with an unsorted array. The difference is however only noticable for
relatively large arrays (around 100 elements or more).

m Mobile Shell Reference Version 1.17 59

3. Library c© 2007 infowing AG

a=[412,-302,18,2077,22,149,18,21];
array.sort(a);
print a
→ [-302,18,18,21,22,149,412,2077]
print array.leindex(a, 22)
→ 4
print array.leindex(a, 3000)
→ 8
print array.leindex(a, -3000)
→ -1
print array.leindex(a, 18)
→ 1

array.new

• function new(size=0, foldedkeys=false)→ Array

Creates a new array of length 0, with pre-allocated capacity for up to size

elements.
For large arrays, pre-allocating the correct size is considerably more efficient.
It avoids reallocating and copying the array contents, and it ensures the ar-
ray being of minimal size. On the other hand, besides effects on memory
needs and runtime, pre-allocating an array will never change the result of any
computation in m.
If foldedkeys=true, the string keys of the array are compared folded, i.e.
are not case sensitive. This is the only way of creating an associative array
with keys that are not case sensitive.

a=array.new(1000);
for i=1 to 1000 do
a=append(a, i) // will never allocate memory

end;
a=array.new(); // same as a=[]
print a
→ []
a=array.new(5, true); // keys of a ignore case
a["one"] = 1;
a["ONE"] = 2;
print a, keys(a)
→ [2] [one]

60 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.3. Module array: Array Functions

array.remove

• function remove(array, start, length=1)→ null

• function remove(array, key)→ null

Removes one or several elements from array. The elements after the re-
moved one(s) are shifted accordingly, and the length of array is reduced by
the number of removed elements.
The first form removes a region of length length, starting at start. It
throws ExcIndexOutOfRange if not 0 <= start <= len(array), or if
not 0 <= length <= len(array) - start.
The second form removes the single element with string key key. It throws
ExcNoSuchKey if this key does not exist.

a=["one":1, "two":2, 3, "four":4, 5];
array.remove(a, 3);
print a, keys(a)
→ [1,2,3,5] [one,two,null,null]
array.remove(a, "one");
print a, keys(a)
→ [2,3,5] [two,null,null]
array.remove(a, 0, 3);
print a, keys(a)
→ [] []

array.rindex

• function rindex(array, val, start=len(array)-1)→
Number

Searches the array array for the first element at or before start equal to
val, and returns the index of the element. If there is no such element, returns
-1. Elements are compared using the builtin function .equal (p. 46).
Throws ExcIndexOutOfRange if not -1 <= start < len(array).

m Mobile Shell Reference Version 1.17 61

3. Library c© 2007 infowing AG

a=["To", "be", "or", "not", "to", "be"];
print array.rindex(a, "be")
→ 5
print array.rindex(a, "Be")
→ -1
print array.rindex(a, "be", 4)
→ 1
print array.rindex(a, "be", 0)
→ -1

See also: array.index (p. 57)

array.sort

• function sort(array, desc=false, mode=raw)→ null

Sorts the array array in ascending order, or in descending order if
desc=true. String comparisons are performed according to mode 3 (one
of array.raw, array.fold, array.collate, see below).
Throws ExcNotComparable if the elements are not all numbers or not all
strings.
See also: array.isort (p. 58)

a=[412,-302,18,2077,22,149,18];
array.sort(a);
print a
→ [-302,18,18,22,149,412,2077]
array.sort(a, true);
print a
→ [2077,412,149,22,18,18,-302]
a=["To", "be", "or", "not", "to", "be"];
array.sort(a);
print a
→ [To,be,be,not,or,to]
array.sort(a, false, array.fold);
print a
→ [be,be,not,or,To,to]

3Sorting is not stable if mode#raw.

62 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.4. Module audio: Audio Functions

array Constants

• const collate = 2 This mode correctly compares accents and um-
lauts, depending on the current locale.
• const fold = 1 This mode ignores case when comparing.
• const raw = 0 This mode directly compares 16-bit character codes.

3.4 Module audio: Audio Functions

This module provides audio functions: generating synthetic beeps and DTMF
sequences, playing most audio file types (e.g. MP3), and recording and edit-
ing AU format and WAV format files.
To directly play an existing audio file, use audio.play (p. 67).
To play parts of a file or record to a file, use audio.open (p. 66), followed
by calls to audio.play (p. 67), audio.record (p. 69) and audio.stop

(p. 69).
Each file has a recorded length (its “duration”) and the “head position” the
player is at or will start at. Both are measured in milliseconds. audio.len
(p. 65) and audio.pos (p. 68) access them. audio.cut (p. 65) cuts a part
out of a recording.
Please note: while it is possible to record phone conversations on most de-
vices using this module, due to limitations in the underlying Symbian OS
APIs, sound cannot be sent to a phone uplink. The behaviour when playing
tones or sound during a phone call varies between devices; some will throw
ErrInUse, others will simply mute the sound.

audio.beep

• function beep(hz=880, ms=800)→ null

Plays a synthetic beep with frequency hz Hertz for a duration of ms millisec-
onds.
This function immediately returns, before playing completes. Exceptions can
therefore be thrown anywhere in the following code.
Throws ErrInUse if the sound unit is busy playing or recording another

m Mobile Shell Reference Version 1.17 63

http://www.symbian.com

3. Library c© 2007 infowing AG

sound. Throws ExcValueOutOfRange if the frequency is not positive.

audio.beep(440, 1000)

audio.busy

• function busy()→ Boolean

Returns true if the last playing function (audio.beep, audio.dtmf,
audio.play) is still producing sound, or if sound is still being recorded
(after audio.record). Returns false otherwise.
This function checks only the current m process: it will return false if the
sound unit is in use by another process (inside or outside of m).

audio.beep(440, 1000);
while audio.busy() do
io.print(io.stdout, ’.’); sleep(200)

end;
print "beep ended"
→beep ended

audio.close

• function close()→ null

Closes the currently accessed audio file.
Throws ErrInUse if the file is being played or recorded. Thus, to forcibly
close a file, use:

audio.stop();
audio.close()

64 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.4. Module audio: Audio Functions

audio.cut

• function cut(start, end=0)→ null

Compatibility of function audio.cut

Sony Ericsson phones cannot truncate
at the beginning, start=0 is manda-
tory.

ErrNotSupported

Cuts the current audio file at the beginning and/or end. The initial start
milliseconds and the final end milliseconds will be removed.
Throws ErrInUse if the file is being played or recorded, ErrAccessDenied
if the file has not been opened for writing, and ErrArgument if any of the
cropped parts are outside the current file.

// truncate the current file by 10% on both ends
audio.cut(0.1*audio.len(), 0.1*audio.len())

audio.dtmf

• function dtmf(digits)→ null

Plays the string digits as DTMF (dual-tone multi-frequency) tones (“tone
dialling”). Valid characters for digits are 0 to 9, A to D, # and *. All other
characters are ignored.
Throws ErrInUse if the sound unit is busy playing or recording another
sound.

// play with ascending high frequency
audio.dtmf(’147*2580369#ABCD’)

audio.len

• function len()→ Number

Returns the length (“duration”) of the current file, in milliseconds.
Throws ErrNotReady if no file has been opened.

m Mobile Shell Reference Version 1.17 65

3. Library c© 2007 infowing AG

audio.open

• function open(file,flags=0,rate=8000)→ Number

Permissions: Read(file) / Read+Write(file)

Opens or creates a file for playing and/or recording, and returns the length of
the file (“duration”) in milliseconds.
Whether the file is opened or created is determined by flags:
• const rw = 1 Open an existing file for recording.
• const wav = 2 Create a file in Microsoft’s WAV format.
• const au = 3 Create a file in Sun’s AU format.
When creating a file, you may combine audio.wav or audio.au with one
of the following flags selecting the codec:
• const alaw = 0 Use A-law compression (13-bit to 8-bit) codec.
• const mulaw = 16 Use µ-law compression (13-bit to 8-bit) codec.
• const pcm8 = 32 Use 8-bit direct pulse-code modulation codec.
• const pcm16 = 48 Use 16-bit direct pulse-code modulation codec.
• const ima = 64 Use IMA adaptive differential PCM codec.
To summarize: audio.open acts according to the following scheme:

• If flags=0 (the default), opens the file for playing. Attempts to record
to it or to truncate it will throw ErrAccessDenied.

• If flags contains audio.rw, opens the file for playing and recording.
Format, codec and sample rate will be taken from the existing file.

• If flags contains audio.wav or audio.au, creates a new file in WAV
or AU format, and the specified codec is chosen. rate indicates the
sample rate in Hz (samples per second). The sample rates supported
depend on codec and device.

For a newly created file in WAV or AU format, the default codec is
A-law, and the default sample rate is 8 kHz.

Throws ErrInUse if a file is already being played or recorded.

66 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.4. Module audio: Audio Functions

// Create a new file with default codec and sample rate
file=’sample.wav’;
audio.open(file, audio.wav);
// record sound until the file exceeds 200 kB
audio.record();
while files.size(file)<=200000 do
sleep(1000)

end;
audio.stop();
print ’Recorded’,audio.len(),’ms in ’,
files.size(file),’bytes.’;

print files.size(file)/audio.len(),’ kB/s’
→ Recorded 25260 ms in 202124 bytes.
→ 8.0017418844 kB/s
// play the file
audio.play(); audio.wait()

// Do the same in full lossless CD quality
audio.open(file, audio.wav | audio.pcm16, 44100);
// record sound until the file exceeds 200 kB
audio.record();
while files.size(file)<=200000 do
sleep(1000)

end;
audio.stop();
print ’Recorded’,audio.len(),’ms in ’,
files.size(file),’bytes.’;

→ Recorded 2900.158 ms in 255838 bytes.
→ 88.215193793 kB/s

audio.play

• function play()→ null

• function play(file)→ null

Permissions: Read(file)

Without argument, starts or continues playing the currently open sound file.
With one argument, directly starts playing a sound file (.mp3, .wav, .au or
such). The file name is relative to the current directory (see 3.1 (p. 41)). When

m Mobile Shell Reference Version 1.17 67

3. Library c© 2007 infowing AG

the sound file has finished playing, it is closed.
This function immediately returns, before playing completes. Exceptions
can therefore be thrown anywhere in the following code. Use audio.wait

(p. 70) to wait for completion.
Throws ErrInUse if the sound unit is busy playing or recording another
sound.
Without argument, throws ErrNotReady if no file has been opened, and
throws ErrArgument if the current playing position is outside the file.

audio.play("c:\\documents\\audio\\Hello.mp3")

audio.pos

• function pos()→ Number

• function pos(ms)→ Number

Without arguments, returns the playing position in the current file, in mil-
liseconds form the start.
With one argument, set the playing position to ms milliseconds.
Throws ErrNotReady if no file has been opened.
With one argument, throws ErrInUse if the file is being played or recorded.

// Open a file and play seconds 5 to 12
audio.open(’sample.wav’);
audio.pos(5000);
audio.play();
sleep(7000);
print audio.pos();
audio.stop()
→ 11850

68 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.4. Module audio: Audio Functions

audio.record

• function record(gain=100)→ null

Compatibility of function audio.record

Sony Ericsson phones cannot record
phone conversations

ErrInUse

Sony Ericsson phones do not reliably
detect unsupported sample rates, re-
sulting in mismatches between sam-
pled and played rates.

Record sound from the microphone or from an ongoing phone conversation
(mixing microphone and incoming phone signal). gain is the recording gain,
a number between 0 (minimum or automatic) and 100 (maximum). Default
gain is 100. Setting the gain to a negative value sets it to 0, setting it to a value
greater than 100 sets it to 100.
The audio data is appended to the current file. Use audio.cut (p. 65) to
truncate the file and set the recording position.
This function immediately returns, before recording completes. Exceptions
can therefore be thrown anywhere in the following code. Use audio.stop

(p. 69) to stop recording.
Throws ErrInUse if a file is already being played or recorded. Throws
ErrNotSupported if the file format does not support recording, or if the
sample rate is not supported.
To add 20 seconds of recorded sound at the end of an existing audio file
sample.wav:

audio.open(’sample.wav’, audio.rw);
audio.record();
sleep(20000);
audio.stop()

audio.stop

• function stop()→ null

Stops the currently playing sound, or the current recording.

m Mobile Shell Reference Version 1.17 69

3. Library c© 2007 infowing AG

audio.volume

• function volume()→ Number

• function volume(percent)→ Number

Returns the current sound output volume and optionally changes it. The vol-
ume is a number between 0 (mute) and 100 (loudest). Default volume is 50.
Setting the volume to a negative value sets it to 0, setting it to a value greater
than 100 sets it to 100.
On most devices, changing the volume while a sound is playing has immedi-
ate effect.

audio.play("c:\\documents\\audio\\HomeBox.mp3");
while audio.busy() do
sleep(100);
audio.volume(audio.volume()-10) // fade out

end

audio.wait

• function wait()→ null

Waits until playing completes. Returns immediately if no sound is playing.
This function checks only the current m process: it will return immediately if
the sound unit is in use by another process (inside or outside of m).

for i=1 to 10 do
audio.wait(); audio.beep(440, 500);
audio.wait(); audio.beep(330, 500)

end

3.5 Module contacts: Contacts Database

This module allows to read and manipulate the contacts stored on the phone.
In the phone’s database, a contact is identified by its id, an integer number.

70 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.5. Module contacts: Contacts Database

Contact Fields

In m, a contact is represented as an array whose elements are the fields of the
contact. Fields are identified by their (array) keys. m recognizes the following
keys, with the corresponding data type:

Key Meaning
adr Address (street)
birth Birthday
cell Cellphone number
company Company name
country Country
email e-mail address
extadr Additional address
extname Additional name
fax Fax number
fname First name
loc Locality (city)
name (Family) name

Key Meaning
note Contact note
pager Pager number
phone Voice phone number
pict Picture image data
po Post Office
region Region
ring Ringtone file name
text Free text
title Job Title
url Website URL
video Video phone number
zip Post Code

Key names are not case sensitive.
The order of fields in the array describing a contact is arbitrary. Arrays re-
turned by functions in this module always start with the two fields name and
fname, if these fields exist.
Address and phone number fields can have one of the following suffices:

Suffix Meaning
.home Home address or phone
.work Work address or phone

For instance, phone.home refers to the home phone number, phone.work
to the work phone number. phone without suffix is unspecified.
Most fields are represented as strings. There are two exceptions:

• birth: The birthday is stored as a number indicating the seconds since
year zero. This is the format used by module time (p. 131).

• pict: The picture is stored as an array containing the image data, typ-
ically in JPEG format. Example functions to load or store a the picture
of a contact c:

m Mobile Shell Reference Version 1.17 71

3. Library c© 2007 infowing AG

use io
function loadpict(file, c)
f=io.open(file);
s=io.read(f, io.size(f)); // read whole file
io.close(f);
c["pict"]=code(s) // string to byte array

end
function storepict(c, file)
if c["pict"]#null then
s=char(c["pict"]); // byte array to string
f=io.create(file);
io.write(f, s);
io.close(f)

end
end

Note that the builtin contacts application in the phone may not support all
keys, or display some of them in a strange way. Furthermore, not all appli-
cations clearly separate home from work data. Hence, the cell phone number
of a person is sometimes stored as cell, sometimes as cell.work or as
cell.home.
The functions of this module throw ExcInvalidParam if a contact array has
no keys, or ErrBadName if a contact array has a key which is not in the above
table.

contacts.add

• function add(contact)→ Number

Permissions: WriteApp

Add a contact to the database, and return its id. The contact must be an array
with keys from the above tables.

c=["name": "Shakespeare",
"fname": "William",
"loc.home": "Stratford-upon-Avon"],
"loc.work": "London",
"birth": time.num("1564-04-23")];

contacts.add(c)
→ 114

72 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.5. Module contacts: Contacts Database

contacts.delete

• function delete(id)→ null

Permissions: WriteApp

Delete the contact with the given id.
Throws ErrNotFound if there is no such contact.

// delete the contact added in the add example
contacts.delete(114)

contacts.find

• function find(text=null, keys=["name","fname"],
sort=[])→ Array

Permissions: ReadApp

Searches the contact database for entries matching text considering the
fields specified in keys, and returns the ids of the matching contacts sorted
by the fields specified in sort:

• If text=null, all entries are returned, and keys is ignored.

• If text#null, searches the contact database for all entries matching
the words in text when considering the fields defined by keys. Both
text and all fields from the database are split into words (sequences of
characters or digits) before comparing them. An entry matches if all of
the words in text are found in any of the fields considered. Words can
also be abbreviated: William matches both W or Will in the search
text.
If keys defines a single field, it can be a string, otherwise it must be an
array of strings.

• If sort=[], the ids are sorted by their ascending numeric value.

• If sort is a string, the ids are sorted by the corresponding field.

• If sort is an array, the ids are sorted by the corresponding fields, from
highest to lowest sort order.

m Mobile Shell Reference Version 1.17 73

3. Library c© 2007 infowing AG

Throws ErrArgument if there are more than 32 keys or sort keys specified.

// get the number of contacts in the database
print len(contacts.find())
→ 104
// print these contacts, sorted by name and first name
for id in contacts.find(null,null,["name", "fname"]) do
c=contacts.get(id);
print c[1], c[0]

end
→ ...

William Shakespeare
...

// Will matches William; so does W
print contacts.find("Will Shakespeare")
→ [114]
print contacts.find("W. Shakespeare")
→ [114]
// get the ids of everybody living or working in London
print contacts.find("London", "loc")
→ [45,67,89,90,91,114]
// Stratford-upon-Avon is considered three words,
// so Avon matches
print contacts.find("Avon", "loc")
→ [114]

contacts.findnr

• function findnr(number, digits=8)→ Array

Permissions: ReadApp

Retrieves the ids of the entries matching the given phone number. Only the
last digits digits in number are considered when comparing. The minimum
for digits is 7.
This function is much faster than find, and more useful, as it only looks at
digits, and the end of the phone numbers.
Throws ExcValueOutOfRange if digits is out of range.

print contacts.findnr("+41(079)7654321", 9)
→ [28]

74 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.5. Module contacts: Contacts Database

contacts.get

• function get(id, keys=null)→ Array

Permissions: ReadApp

Get fields of the contact with id id. If keys=null, returns all fields defined
for the contact. If keys#null, returns only the fields specified in keys. keys
can be a single string specifying a single field, or an array specifying multiple
fields.
If they exist, the fields name and/or fname are at the beginning of the returned
array.
Throws ErrNotFound if there is no contact with this id; throws
ErrArgument if there are more than 32 keys specified.

c=contacts.get(114);
print c
→ [Shakespeare,William,Stratford-upon-Avon,London,

49365849600]
print time.str(c["birth"])
→ 1564-04-23 00:00:00
print contacts.get(114, ["name", "fname"])
→ [Shakespeare,William]
c=contacts.get(114, "loc");
print c
→ [Stratford-upon-Avon,London]
print keys(c)
→ [loc.home,loc.work]

contacts.labels

• function labels(keys=null)→ Array

Get labels for the fields. Labels are language dependent. keys is interpreted
as follows:

• If keys=null, returns all standard labels.

• If keys is a string, returns the label(s) for the corresponding field(s).

• If keys is an array, returns the labels for the corresponding fields.

m Mobile Shell Reference Version 1.17 75

3. Library c© 2007 infowing AG

Throws ErrArgument if there are more than 32 keys specified.
Suffices (.home, .work) can be used as keys, but not as field suffices:
labels() throws ErrBadName in this case.
If they exist, the labels for name and/or fname are at the beginning of the
returned array.
The label array has the same keys as a contact.

l=contacts.labels();
print l
→ [Last name,First name,Tel. (home),Mobile

(home),Fax (home),E-mail (home),Web addr. (home),
Street (home),...<46>]

l["title"]
→ Job title
// print a contact with all its labels
c=contacts.get(114);
for k in keys(c) do
print l[k], "-", c[k]

end
→ Last name - Shakespeare

First name - William
City (home) - Stratford-upon-Avon
City (business) - London
Birthday - 49365849600

// get all work related labels
print contacts.labels([".work"])
→ [Tel. (business),Mobile (business),Fax

(business),E-mail (business),Web addr. (bus.),Street
(business),...<12>]

contacts.labels("phone.work")
→ ErrBadName thrown

contacts.new

• function new(time)→ Array

Permissions: ReadApp

Returns the list of contacts modified since the specified point in time. time
is the number of seconds since year 0 UTC. See also module time (p. 131).

76 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.5. Module contacts: Contacts Database

// get the entries changed within the last ten minutes
print contacts.new(time.utc()-10*60)
→ [114]

contacts.own

• function own()→ Number

Permissions: ReadApp

• function own(id)→ Number

Permissions: ReadApp+WriteApp

There is a single contact in the database which can be marked as own contact,
indicating the owner of the phone (or any other particular person). Some
phones can use this information to quickly send a vCard4 of the phone owner.
Without an argument, the id of this contact is returned. With an argument, the
own contact id is set to id, and the old one is returned.
Returns -1 if no own contact has been set, or it has been deleted.
Throws ErrNotFound if there is no contact with this id.

// if there is no owner, make it the first Shakespeare
if contacts.own()=-1 then
ids=contacts.find("Shakespeare");
if len(ids)>0 then
contacts.own(ids[0])

end
end

contacts.set

• function set(id, contact)→ null

Permissions: WriteApp

Updates the contact with id id, updating or adding fields in array contact.
contact must be an array with keys from the above tables.

4A standard defined by the Internet Mail Consortium, see
www.imc.org/pdi/vcardoverview.html.

m Mobile Shell Reference Version 1.17 77

http://www.imc.org/pdi/vcardoverview.html

3. Library c© 2007 infowing AG

Fields already existing in the database are updated, the other fields are added.
Fields not in the array are not modified. Fields which are null in the array
are removed from the contact.

// Replace all +41 1 numbers by +41 44
const fields=["phone", "fax", "cell", "pager"]);
for id in contacts.find() do
c=contacts.get(id, fields);
m=false;
for i=0 to len(c)-1 do
// field could be null or too short
if c[i]!=null then
n=trim(c[i]);
if len(n)>=11 then
// replace +411 by +4144
if substr(n,0,4)="+411" then
c[i]="+4144" + substr(n, 4); m=true

// replace +41 1 by +41 44
elsif substr(n,0,5)="+41 1" then
c[i]="+41 44" + substr(n, 5); m=true

end
end

end
end;
if m then
contacts.set(id, c)

end
end

3.6 Module files: File and Directory Ac-
cess

This module provides access to files and directories of the underlying op-
erating system, including a function to send a file via different messaging
interfaces (“send as”).
To read and write files, use module io (p. 111).
If not absolute, pathes are always relative to the current directory. See also
section 3.1 (p. 41).

78 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.6. Module files: File and Directory Access

Some functions of this module allow the use of file patterns: these
may contain the wildcards * matching any number of characters,
and ’?’ matching a single character. For instance, the pat-
tern d:\documents\mShell*Test.* matches any file in directory
\documents\mShell on drive D: whose name ends with Test.
Many of the functions in this module can render a mobile phone completely
unusable, e.g. by deleting system configuration data, or by overwriting sen-
sitive files. Make sure you regularly back up your mobile phone, and inform
yourself how to reset your phone to factory status. You have been warned!

files.attr

• function attr(path)→ Number

Permissions: Read(path)

• function attr(path, newattr)→ Number

Permissions: Read+Write(path)

Gets or sets the attribute bits of a file. With one argument, returns the attribute
bits of the file or directory path. With two arguments, returns the old file
attributes, and sets the new attributes of path.
The attribute bits define the characteristics of a file:
• const arch = 32 File or directory has the archive bit set.
• const dir = 16 Path references a directory.
• const hidden = 2 File or directory is hidden (invisible).
• const ro = 1 File or directory is read-only.
• const sys = 4 File or directory has the system bit set.
• const all = 55 All attribute bits set.
The status of the files.dir attribute cannot be changed.
Use the bitwise or operator | to combine single bits; use the bitwise and
operator & to check for single bits.

m Mobile Shell Reference Version 1.17 79

3. Library c© 2007 infowing AG

// make the file "secret.dat" read-only and invisible
files.attr("secret.dat", files.ro | files.hidden);
// check whether a path is a directory
print
files.attr("c:\\documents\\mShell") & files.dir # 0

→ true

See also: files.scan (p. 84)

files.copy

• function copy(srcpattern, destdir, recursive=false)→
Number

/r:recursive

Permissions: Read(srcpattern)+Write(destdir)

Copies a file or all files matching srcpattern to another directory destdir.
If recursive=true, or /r is specified in interactive mode, also copies all
files matching the file part of srcpattern in all subdirectories of the di-
rectory part of srcpattern, and creates the corresponding subdirectories in
destdir.
Returns the number of files copied.
In interactive shells, this function is available as cp.

print files.copy("secret.dat", "d:\\")
→ 1
// copy all m scripts from drive C: to drive D:
files.copy("c:\\documents\\mShell*.m",

"d:\\documents\\mShell", true)

m>cp c:\documents\mShell*.m d:\documents\mShell/r

The last two statements (the second in interactive mode) are equivalent.

files.delete

• function delete(pattern, recursive=false)→ Number

/r:recursive

Permissions: Write(pattern)

80 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.6. Module files: File and Directory Access

Deletes a file or all files matching pattern. If recursive=true, or /r is
specified in interactive mode, also deletes all files matching the file part of
pattern in all subdirectories of the directory part of pattern.
Returns the number of files deleted.
In interactive shells, this function is available as del.

print files.delete("secret.dat");
→ 1
// delete all m scripts from drive C:
files.delete(""c:\\documents\\mShell*.m", true)

m>del c:\documents\mShell*.m/r

The last two statements (the second in interactive mode) are equivalent.
See also: files.rmdir (p. 83)

files.edit

• function edit(path, cursor=0)→ null

Permissions: Read+Write(path)

Loads the file path into the builtin editor, and shows the editor. Any previ-
ously loaded file (e.g. a script being edited) will be saved first. The cursor
is moved to position cursor in the file. The character encoding applied is
determined by the encoding property (see A.3 (p. 161)).
In interactive shells, this function is available as edit.

// edit an XML file
files.edit("\\documents\\MMS\\Sample.xml")

files.exists

• function exists(path)→ Boolean

Permissions: Read(path)

Returns true if the file or directory denoted by path exists, false if there
is no such file or directory.

m Mobile Shell Reference Version 1.17 81

3. Library c© 2007 infowing AG

print files.exists("c:\\documents\\mShell")
→ true

files.mkdir

• function mkdir(path, all=false)→ null

/a:all

Permissions: Write(path)

Create a new directory path. path can be relative to the current directory, or
absolute. See also section 3.1 (p. 41).
If all=false, mkdir creates just one directory. If all=true, or /a is spec-
ified in interactive mode, all directories down to the last in path are created,
as necessary.
In interactive shells, this function is available as md.

mkdir("subdir");
mkdir("..\\otherdir");
mkdir("c:\\documents\\mShell", true)

m>md c:\documents\mShell/a

The last two statements (the second in interactive mode) are equivalent.

files.move

• function move(srcpattern, destpath, recursive=false)→
Number

/r:recursive

Permissions: Read+Write(srcpattern), Write(destdir)

Moves a file or all files matching srcpattern to another directory destdir.
If recursive=true, or /r is specified in interactive mode, also moves all
files matching the file part of srcpattern in all subdirectories of the direc-
tory part of srcpattern, removes and creates the corresponding subdirecto-
ries in destdir.
Returns the number of files moved.
In interactive shells, this function is available as mv.

82 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.6. Module files: File and Directory Access

print files.move("secret.dat", "d:\\")
→ 1
// move all m scripts from drive C: to drive D:
files.move("c:\\documents\\mShell*.m",

"d:\\documents\\mShell", true)

m>mv c:\documents\mShell*.m d:\documents\mShell/r

The last two statements (the second in interactive mode) are equivalent.

files.rename

• function rename(oldfile, newfile)→ null

Permissions: Write(oldfile)+Write(newfile)

Renames the file or directory oldfile to newfile. This function does not
support wildcards.

files.rename("secret.dat", "topsecret.dat")

files.rmdir

• function rmdir(path, recursive=false)→ Number

/r:recursive

Permissions: Write(path)

Removes the directory path. If recursive=false, the directory must be
empty before it can removed. If recursive=true, or /r is specified in
interactive mode, the directory with all its contents and subdirectories will be
removed.
Returns the number of directories and files removed.
In interactive shells, this function is available as rd.

m Mobile Shell Reference Version 1.17 83

3. Library c© 2007 infowing AG

print rmdir("subdir")
→ 1
rmdir("..\\otherdir");
rmdir("c:\\myfiles\\images", true)

m>rd c:\myfiles\images/r
→ (number of items removed)

The last two statements (the second in interactive mode) are equivalent: they
both remove the directory images with all its contents.

files.roots

• function roots()→ Array

Returns an array with all accessible file system roots (drives).

print files.roots()
→ [A:,C:,D:,Z:]

files.scan

• function scan(pattern, attr=0, mask=files.dir |
files.hidden | files.sys)→ Array

Permissions: Read(pattern)

Returns an array with all directory entries whose name matches pattern and
whose attribute bits defined by mask match attr: a file path matches if
files.attr(path) & mask = attr & mask.
Example values for attr and mask:

• The default values exclude directories, hidden and system files.

• attr=files.dir returns only directories.

• mask=0 ignores all attributes and thus returns all entries.

• attr=files.ro and mask=files.ro return only read only files and
directories.

84 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.6. Module files: File and Directory Access

• attr=files.arch and mask=files.dir|files.arch return only
files with the archive bit set.

The file names returned do not contain the directory part defined by pattern,
and are sorted by name.

// search the application directory for DLL files
print files.scan(system.appdir+"*.dll")
→ [Array_mm.dll,Audio_mm.dll,...]
// search the document directory for hidden files only
print files.scan(system.docdir+"*",files.hidden)
→ [10204299.act]

files.send

• function send(path, subject=null)→ null

Permissions: Read(path)

Compatibility of function files.send

Nokia phones before Symbian 8 Call is ignored

Sends the file path over a messaging channel chosen by the user (“Send as”).
Channels typically include Bluetooth, MMS, and e-mail. The recipient and
other channel dependent message details will be specified interactively.
subject is the subject of the message (if applicable). If subject=null, it
defaults to path without the directory component.
In interactive shells, this function is available as send.

// send a script file
files.send(system.docdir+"coolgame.m",

"The cool game I promised")

m Mobile Shell Reference Version 1.17 85

3. Library c© 2007 infowing AG

Series 60 sample screen UIQ sample screen

files.size

• function size(path)→ Number

Permissions: Read(path)

Returns the size in bytes of the file denoted by path. Returns 0 if path
denotes a directory.

print files.size(system.appdir+"Audio_mm.dll")
→ 2956

files.time

• function time(path)→ Number

Permissions: Read(path)

• function time(path, newtime)→ Number

Permissions: Read+Write(path)

Gets or sets the time when the file or directory denoted by path has been
created or modified. The time is in seconds since midnight on January 1st
of year 0. With one argument, returns the modification time of the file or
directory path. With two arguments, returns the old modification time, and
sets the new time.

print files.time("c:\\documents\\mShell")
→ 63276033444

See also module time (p. 131).

86 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.7. Module graph: Screen Graphics

3.7 Module graph: Screen Graphics

This module supports drawing of arbitrary two-dimensional graphic objects
and images from files on the screen. The module has its own view, which can
be shown or hidden under programmatic control. When shown, it appears on
top of the normal console window and hides it.
The view supports two modes: “console mode”, with the view covering the
area of the m console, and “full screen mode”, with the view covering the
entire screen. The default mode is “console”, but it can be changed any time
by graph.full (p. 94).
By default, the drawing area’s size (“canvas” size) corresponds to the con-
sole’s size, but it can be changed to any size which fits into memory via the
graph.size (p. 106) function. If the canvas is bigger than the view, the ori-
gin of the view on the canvas can be specified via the graph.show (p. 105)
function.
Graphic objects are added by calling the corresponding functions, and are
drawn in the order they have been added: objects added later are drawn over
objects added earlier. Objects are not drawn until graph.show (p. 105) is
called, or the operating system requests redrawing.

Coordinates

Position and size of graphic objects are given by coordinates. This mod-
ule supports two modes for specifying coordinates (see also graph.scale

(p. 104)):

• Unscaled, with the unit being a single screen pixel, defining the area
to draw on as a rectangle of integer width and height. Following con-
ventions for pixel coordinates, y=0 is at the top of the rectangle, and y

increases downwards.

• Scaled, normalizing the rectangle to draw on as a square with sides
of length 1, and an additional rectangle on the right for x>1 (typically
on Series 60 devices), or at the bottom for y<0 (typically on UIQ de-
vices). Following conventions for mathematical coordinates, y=0 is at
the bottom of the square, and y increases upwards.

m Mobile Shell Reference Version 1.17 87

3. Library c© 2007 infowing AG

Unscaled (pixels) Scaled (unit square)

(0,h)

(0,0) (w,0)

(0,0)
(1,0)

(0,1)

Colors

Colors for the graphic are expressed as RGB, i.e. as the three intensities of
red, green and blue. In m, there are two ways to specify an RGB value:

• As an array of three color intensities between 0 and 1. For instance,
[0.5,0,0.5] specifies a dark magenta (50% red and 50% blue).

• As an integer encoding the three color intensities between 0 and 255
as red shl 16 | green shl 8 | blue. This is typically written
in hexadecimal notation as 0xrrggbb. For instance, 0x800080 is (after
rounding) equivalent to [0.5,0,0.5].

Eight standard colors are predefined as module constants:
• const black = 0x000000

• const white = 0xffffff

• const red = 0xff0000

• const green = 0x00ff00

• const blue = 0x0000ff

• const yellow = 0xffff00

• const cyan = 0x00ffff

• const magenta = 0xff00ff

88 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.7. Module graph: Screen Graphics

The view itself has a background color (set via graph.bg (p. 90)), which
initially is white. Graphic items drawn on the background generally have two
colors:

• The pen color defines the color in which lines, texts and outlines are
drawn. It can also be set to false, so no outlines are drawn. It is
initially black, and set via graph.pen (p. 100).

• The brush color defines the color by which areas are filled. It can also
be set to false, so areas are not filled. It is initially false, and set via
graph.brush (p. 90).

Simple Example

The following example draws the graph of a normal distribution around the
average 0.5, coloring it from almost pure blue to almost pure red:

// use the normalized 0 to 1 coordinate system
graph.scale(true);
h=0.02;
for x=0.1 to 0.9 by h do
t=-4*(x-0.5); y=math.exp(-t*t)*0.9;
color=[x,0,1-x];
graph.pen(color); graph.brush(color);
graph.rect(x,0.1,h,y)

end;
graph.pen(graph.black);
graph.text(0.1, h, "Value");
graph.text(0.1-h, 0.1, "Frequency", graph.up);
graph.show();

m Mobile Shell Reference Version 1.17 89

3. Library c© 2007 infowing AG

Series 60 sample screen UIQ sample screen

graph.bg

• function bg(color)→ Array

• function bg()→ Array

Gets or sets the background color of the graph view. With one argument,
sets the background color, and returns the old background color, as an array
of red, green and blue intensities. Without arguments, returns the current
background color.
See section 3.7 (p. 88) for the definition of colors.

// set the background color to a light gray
graph.bg([0.9,0.9,0.9])

graph.brush

• function brush(color)→ Array

• function brush()→ Array

Gets or sets the brush color. This is the color used to fill areas surrounded

90 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.7. Module graph: Screen Graphics

by objects. With one argument, sets the brush color or disables it (if
color=false), and returns the old brush color as an array of red, green
and blue intensities, or false if the brush was disabled. Subsequently added
objects will use the new brush color.
Without arguments, returns the current brush color.
By default, the brush is disabled. See section 3.7 (p. 88) for the definition of
colors.

// fill the objects with white
graph.brush(graph.white)

graph.circle

• function circle(x, y, diameter)→ null

Draws a circle in the square defined by the corners (x,y) and
(x+diameter,y+diameter). The outline is drawn with the current pen
color, and the circle is filled with the current brush color.

graph.scale(true);
graph.pen(graph.red);
graph.brush(graph.green); // fill with green
graph.circle(0.5, 0.4, 0.3);
graph.brush(false); // do not fill
graph.circle(0.5, 0.6, 0.3);

Sample m screen

m Mobile Shell Reference Version 1.17 91

3. Library c© 2007 infowing AG

graph.clear

• function clear()→ null

Removes all objects from the view, so only an empty background is drawn.

graph.ellipse

• function ellipse(x, y, w, h)→ null

• function ellipse(x, y, w, h, alpha, beta)→ null

Draws an ellipse, an arc or a pie slice:

• With four arguments, draws an ellipse into the rectangle with corner at
x,y, width w and height h. The outline is drawn with the current pen
color, and the ellipse is filled with the current brush color.

• With six arguments and the brush enabled, draws the outline of a pie
slice with the current pen color, and fills it with the current brush color.
The pie is defined by two angles alpha and beta measured in degrees
from the x axis, on a circle around the center of the ellipse:

(x,y)

h

w

α

β

• With six arguments and the brush disabled, draws just the arc, i.e. the
part of the pie on the outline of the ellipse.

92 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.7. Module graph: Screen Graphics

// draw an elliptic pie, with parallel arcs
percent=[26, 18, 43, 13];
colors=[graph.red,graph.green,graph.blue,graph.yellow];
alpha=0;
for i=0 to len(percent)-1 do
beta=alpha+360*percent[i]/100;
// the pie slice (brush enabled)
graph.pen(graph.black); graph.brush(colors[i]);
graph.ellipse(10, 10, 160, 140, alpha, beta);
// the parellel arc (brush disbled)
graph.pen(colors[i]); graph.brush(false);
graph.ellipse(5, 5, 170, 150, alpha, beta);
alpha=beta

end;
graph.show()

Sample m screen

graph.font

• function font(font)→ Array

• function font()→ Array

Gets or sets the text font. With one argument, sets the current font, and returns
the old font. Subsequently via graph.text (p. 107) added texts will use the
new font. Without arguments, returns the current font.
The default font is the m console font. See ui.mfont (p. 144) for the defini-
tion of fonts, and graph.text (p. 107) for an example using fonts.

m Mobile Shell Reference Version 1.17 93

3. Library c© 2007 infowing AG

graph.full

• function full()→ Array

• function full(enabled)→ Array

Compatibility of function graph.full

Sony Ericsson phonesa. Restricted menu access

aIn full screen mode, menus can only be accessed with the jog dial. Once activated, the
menu bar will stay on top of the view until graph.show is called again.

Without arguments, returns the size of the view in the current mode, scaled if
in scaled mode.
With one argument, enables (enabled=true) or disables (enabled=false)
full screen mode, and returns the new view size, scaled if in scaled mode.
Note that this does not change the size of the canvas; the canvas size can only
be changed with graph.size (p. 106).
The following function fills the screen (not the canvas) with an ellipse in a
given color:

function fill(color)
graph.clear();
graph.pen(color); graph.brush(color);
s=graph.full(); // get screen size
graph.ellipse(0, 0, s[0], s[1])

end

94 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.7. Module graph: Screen Graphics

Drawing a red ellipse in console mode just fills the console view, as usual:

graph.full(false);
fill(graph.red);
graph.show()

Series 60 sample screen UIQ sample screen

m Mobile Shell Reference Version 1.17 95

3. Library c© 2007 infowing AG

Drawing a green ellipse after changing to full screen mode truncates the el-
lipse to the console view size (assuming the canvas size wasn’t changed):

graph.full(true);
fill(graph.green);
graph.show()

Series 60 sample screen UIQ sample screen

96 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.7. Module graph: Screen Graphics

Drawing a blue ellipse after setting the canvas size to the view size fills the
entire screen with the ellipse:

s=graph.full(true);
graph.size(s[0], s[1]);
fill(graph.blue);
graph.show()

Series 60 sample screen UIQ sample screen

graph.get

• function get(x, y)→ Number

• function get(x, y, w)→ Array

• function get(x, y, w, h)→ Array

Gets a pixel, a scan line or a rectangle from the current image.
With two arguments, returns the color of the pixel at (x,y) as a single integer
(see section 3.7 (p. 88)).
With three arguments, returns an array with the pixel colors of the horizontal

m Mobile Shell Reference Version 1.17 97

3. Library c© 2007 infowing AG

line of length w starting at (x,y).
With four arguments, returns a matrix with the pixel colors of the rectangle
with corner (x,y), width w and height h.
In scaled mode, coordinates and dimensions are scaled.
See also graph.put (p. 101).

graph.hide

• function hide()→ null

Hides the graph view, showing the standard process view, or any previous
view. If the graph view is not shown, this call is ignored.

graph.icon

• function icon(path, transparent=null)→ Native Object

Permissions: Read(path)

• function icon(data, transparent=null)→ Native Object

• function icon(data, maskData)→ Native Object

• function icon(icon)→ Native Object

Creates an icon from an image file, or from color data, and returns the icon
object. Icons may have an optional transparency mask, defining which pixels
are opaque (drawn) and which are transparent (not drawn) when drawing the
icon with graph.put (p. 101).
With a single path argument, loads an image from the file at path, and re-
turns it as an icon. The image file formats supported vary from device to de-
vice, but usually include BMP, GIF, JPEG and PNG formats. If the image has
transparency information, it is also loaded to define the icon’s transparency
mask. Alternatively, if transparent is a number, all pixels of this color are
assumed transparent.
With a single data argument, the icon’s image is defined by the colors in
data. data is typically a matrix as returned by graph.get (p. 97), but can
also be a single pixel or a scan line. If transparent is a number, all pixels
of this color are assumed transparent. Alternatively, the matrix maskData

can define transparency on a pixel by pixel basis: all black (zero) pixels in

98 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.7. Module graph: Screen Graphics

maskData are assumed transparent. maskData must have the same dimen-
sions as data.
With a single icon argument, a copy of the icon is created and returned, e.g.
to scale it while still keeping the original.
Use graph.size (p. 106) to obtain the size of an icon, or to rescale it.
Large icons, e.g. those produced by a high resolution camera, consume con-
siderable memory.

// load the icon
i=graph.icon("mShell.png")
// get its size
graph.size(i)
→ [156,92]
// draw it
graph.put(20,20,i)
// copy the icon
i2=graph.icon(i);
// scale the copy into a 80x80 square and draw it
graph.size(i2,80,80);
graph.put(20,120,i2);
graph.show()

Sample m screen

graph.line

• function line(x1, y1, x2, y2)→ null

Draws a line from (x1,y1) to (x2,y2), using the current pen color.

m Mobile Shell Reference Version 1.17 99

3. Library c© 2007 infowing AG

// plot a sine wave from 0 to 4 pi
graph.scale(true);
x1=0; y1=0;
for x=0 to 1 by 0.02 do
y=(math.sin(4*math.pi*x)+1)/2;
if x>0 then graph.line(x1,y1,x,y) end;
x1=x; y1=y

end;
graph.show()

Sample m screen

graph.pen

• function pen(color)→ Array

• function pen()→ Array

Gets or sets the pen color. This is the color used to draw the outlines of ob-
jects. With one argument, sets the pen color or disables it (if color=false),
and returns the old pen color as an array of red, green and blue intensities, or
false if the pen was disabled. Subsequently added objects will use the new
pen color.
Without arguments, returns the current pen color.
The default pen color is black. See section 3.7 (p. 88) for the definition of
colors.

// use a slightly dark magenta pen
graph.pen(0xc000c0)

100 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.7. Module graph: Screen Graphics

graph.poly

• function poly(x, y)→ null

Draws a closed polygon following the points given by x and y. x

and y must be two arrays of identical length. The polygon’s edges are
lines from (x[i],y[i]) to (x[i+1],y[i+1]) (0 <= i < len(x) -

1), with the last (closing) line going from (x[len(x)-1],y[len(x)-1])

to (x[0],y[0]). The lines of the polygon are drawn with current pen color,
and the polygon’s interior (or interiors) are filled with the current brush color.

// draw a blue bowtie, filled with cyan
graph.pen(graph.blue); graph.brush(graph.cyan);
graph.poly([20,150,150,20],[40,140,40,140]);
graph.show()

Sample m screen

graph.put

• function put(x, y, color)→ null

• function put(x, y, icon)→ null

Draws a single pixel, a scan line or a rectangle, or draws an icon.
If color is a number, sets the pixel at (x,y) to the color color.
If color is an array of numbers, sets the pixels from (x,y) to
(x+len(color)-1,y) to the colors in color.
If color is a matrix of numbers, sets the rectangle with upper left corner
(x,y), height len(data) and width len(data[0]) to the colors in color.

m Mobile Shell Reference Version 1.17 101

3. Library c© 2007 infowing AG

If the third parameter is an icon, draws icon with upper left corner (x,y). If
the icon has a mask, only opaque pixels are drawn.
In scaled mode, (x,y) are scaled, but always define the upper left corner of
the rectangle.
Current pen and brush color do not affect what is being drawn.
A graph.put example drawing single points:

// plot a sine wave with single red points
graph.bg([0.8,1,0.8]); graph.clear();
graph.scale(true);
for x=0 to 1 by 0.01 do
y=(math.sin(4*math.pi*x)+1)/2;
graph.put(x,y,graph.red)

end;
graph.show()

Sample m screen

A graph.put example drawing icons, with and without transparent back-

102 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.7. Module graph: Screen Graphics

ground:

// Draw a blue ellipse
graph.brush(graph.blue);
graph.ellipse(0,0,60,40)
// Copy the ellipse and replicate it
data=graph.get(0,0,60,40);
for i=0 to 3 do
graph.put(40*i,30*i,data)

end;
// The entire rectangle is overwritten
graph.show()
// Create an icon, making white transparent
icon=graph.icon(data, graph.white);
graph.clear()
// Replicate the icon
for i=0 to 3 do
graph.put(40*i,30*i,icon)

end
// Only non-white pixels are overwritten
graph.show()

graph.rect

• function rect(x, y, w, h)→ null

Draws a rectangle between the corners (x,y) and (x+w,y+h). The outline

m Mobile Shell Reference Version 1.17 103

3. Library c© 2007 infowing AG

is drawn with the current pen color, and the rectangle is filled with the current
brush color.
rect(x,y,w,h) produces the same as
poly([x,x+w,x+w,x],[y,y,y+h,y+h]).

graph.save

• function save(path)→ null

Permissions: Write(path)

• function save(path, x, y, w, h)→ null

Permissions: Write(path)

Saves the image produced by drawing to the file given by path. With one ar-
gument, saves the whole image. With five arguments, saves only the rectangle
between the corners (x,y) and (x+w,y+h).
The desired image file format is determined from the image file suffix. Sup-
ported file suffices are .gif (GIF format), .jpg (JPEG format) and .png

(PNG format).

Compatibility of saving to PNG
Sony Ericsson phones ErrNotSupported

// save the entire drawing to rates.jpg
graph.save("rates.jpg");
// save only the upper right quadrant to d:\rates.gif
graph.scale(true);
graph.save("d:\rates.gif", 0.5, 0.5, 0.5, 0.5)

graph.scale

• function scale(scaled)→ Boolean

• function scale()→ Boolean

Gets or sets the current scaling mode. With one argument, sets the scaling
mode to scaled, and returns the old scaling mode. Without an argument,
returns the current scaling mode.
For information about scaling, see section 3.7 (p. 87).

104 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.7. Module graph: Screen Graphics

graph.show

• function show()→ null

• function show(x, y)→ null

Shows the graph view, hiding the standard process view, and draws all objects
added so far. If the graph view is already shown, it is redrawn.
With two arguments, also aligns the origin of the graph view with point (x,y)
of the the canvas. In unscaled mode, the origin of the view is in its upper left
corner, and graph.show(0,0) aligns the upper left corner of the canvas
with it. In scaled mode, x and y are scaled, and graph.show(0,0) aligns
the lower left corner of the view with the lower left corner of the canvas.

// get the original size and create a canvas of 480x320
s=graph.size(480, 320)
// draw a red circle on it
graph.brush(graph.red);
graph.ellipse(10, 10, 460, 300)
// show its upper left quadrant
graph.show(0, 0)
// show its lower right quadrant
graph.show(480-s[0], 320-s[1])

m Mobile Shell Reference Version 1.17 105

3. Library c© 2007 infowing AG

graph.size

• function size()→ Array

• function size(icon)→ Array

• function size(text)→ Array

• function size(w, h)→ Array

• function size(icon, scale)→ Array

• function size(icon, w, h)→ Array

Without arguments, returns the size (width and height) of the drawable
area. The drawable area includes all the points in the rectangle between
(0,0) and (graph.size()[0], graph.size()[1]). In unscaled mode,
graph.size() returns the width and height as number of pixels. In scaled
mode, one of width or height will always be one.
With one argument, returns the size (width and height) of the icon icon, or
of text if it were drawn using the current font.
With two numeric arguments w and h, sets the size of the canvas to width w

and height h, and returns the size of the old canvas (initially, the size of the
canvas matches the size of the view). In unscaled mode, w and h are measured
in pixels. In scaled mode, w and h are resizing factors (relative to the current
size), and the scale is recalculated. See graph.show (p. 105) for an example
using a canvas larger than the view.
With two arguments icon and a scale, scales the icon icon by the factor
scale. Returns the old size (width and height) of the icon.
With three arguments, scales the icon icon to the width w and height h. Re-
turns the old size (width and height) of the icon.

106 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.7. Module graph: Screen Graphics

// get unscaled and scaled sizes
graph.scale(false);
print graph.size()
→ [208,227]
graph.scale(true);
print graph.size()
→ [1,1.0913461538]
// draw text centered in a red rectangle
text="Alarm"; x=0.5; y=0.2; w=0.6; h=0.2;
graph.brush(red); graph.rect(x, y, w, h);
s=graph.size(text);
graph.text(x+(w-s[0])/2,y+(h-s[1])/2,text);
graph.show()

Sample m screen

graph.text

• function text(x, y, text, direction=0)→ null

Draws text starting (the baseline of the first character) at point (x,y) using
the current font. Text can be drawn horizontally or vertically:

• If direction=0, text is drawn horizontally.

• If direction>0, text is drawn vertically going up.

• If direction<0, text is drawn vertically going down.

m Mobile Shell Reference Version 1.17 107

3. Library c© 2007 infowing AG

Two indicate the direction, two constants are defined:
• const up = 1 For vertical text going upwards.
• const down = -1 For vertical text going downwards.

graph.pen(0x800080);
graph.text(50,70,"mShell");
graph.text(50,70,"mShell",graph.up);
old=graph.font(["SwissA", 24, true, false]);
graph.pen(0x808000);
graph.text(50,90,"mShell");
graph.text(50,90,"mShell",graph.down);
graph.font(old);
graph.show()

Sample m screen

3.8 Module gsm: GSM information

This module provides access to GSM (Global System for Mobile communica-
tion) related information. This includes identifiers and network information.
Please note that not all functions of this module are supported on all devices.
Some functions may throw ErrNotSupported.

108 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.8. Module gsm: GSM information

gsm.cid

• function cid()→ Number

Permissions: ReadApp

Gets the current CID (Cell Identity). Roughly speaking, a cell identifies the
location of the phone: in a simplified view, each GSM cell corresponds to
an antenna the phone is communicating with5. In cities, cells identify the
location of the phone with a precision of a few hundred meters or even less.
In remote locations, in particular on mountains, the distance to the antenna
can be ten or more kilometers.
In practice, a specific location (e.g. an office) is typically covered by more
than one cell, so the CID may change even if the phone doesn’t move.
According to GSM specs, the CID is a number between 0 and 65535.

print gsm.cid()
→ 17437

gsm.net

• function net()→ Array

Permissions: ReadApp

Gets the current network as an array with the following keys:
Key Contents
mcc Mobile Country Code (MCC)
mnc Mobile Network Code (MNC)
short Short Network Name
long Long Network Name
lac Location Area Code (LAC)

To identify the current provider, MCC and MNC should be used. MCC and
MNC of the home network are identical to the first three and two digits of the
IMSI (see gsm.imsi (p. 111)).
Short and long name come from a database stored in the phone, so they may
differ between phones for the same network.

5Usually, a single BTS (base transceiver station) covers multiple cells via sectorial antennas
mounted on a single antenna tower.

m Mobile Shell Reference Version 1.17 109

3. Library c© 2007 infowing AG

n=gsm.net();
print n
→ 228,1,Swisscom,Swisscom,1616]
print 100*n["mcc"]+n["mnc"]
→ 22801
print substr(gsm.imsi,0,5)
→ 22801

gsm.new

• function new(timeout=-1)→ Boolean

Permissions: ReadApp

Waits until the current location information (typically the cell) changes, or
until timeout milliseconds passed, if timeout>=0.
Returns true if the location information changed, or false if the timeout
expired.
The following code fragment waits ten seconds for a change in the location
information, and prints the new cell if it changed.

if gsm.new(10000) then
print "In cell",gsm.cid()

end

gsm.signal

• function signal()→ Number

Permissions: ReadApp

Gets the strength of the signal in the current network. The meaning of the
returned value is device dependent. It may be a number between 0 (no signal)
and 100 (strongest), or it may correspond to the number of signal strength
bars normally shown on the display.

print gsm.signal()
→ 89

110 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.9. Module io: File and Stream Input/Output

gsm Constants

• const imei = phone identifier

This constant contains the IMEI (International Mobile Equipment Identity)
for the device m is running on. The IMEI is a fifteen digit unique identifier
assigned to each device (cellphone). This number can also be queried directly
by dialing *#06# on the phone.

print gsm.imei
→ 355023001234567

• const imsi = subscriber identifier

Compatibility of constant imsi
Nokia 6600: the IMSI cannot be ob-
tained.

imsi=000000000000000

This constant contains the the IMSI (International Mobile Subscriber Iden-
tity) for the SIM card of the device m is running on. The IMSI is an up to
fifteen digit unique identifier assigned to each subscriber (SIM card).

print gsm.imsi
→ 228011234567890

• const number = own phone number

Contains the own phone number, usually with country prefix.

print gsm.number
→ +41791234567

3.9 Module io: File and Stream In-
put/Output

This module provides functions to read and write files or communication
streams via the underlying operating system.
Some of the functions in this module can render a mobile phone completely
unusable, e.g. by overwriting sensitive files. Make sure you regularly back up
your mobile phone, and inform yourself how to reset your phone to factory

m Mobile Shell Reference Version 1.17 111

3. Library c© 2007 infowing AG

status. You have been warned!
Before file operations can be performed, a file has to be opened for reading or
reading and writing. Opening a file returns a stream object which identifies
the file for subsequent operations. When file operations are completed, the
file should be closed6.

// open the standard autoexec.m script
f=io.open(system.appdir + "autoexec.m");
// read the first 28 bytes (characters)
s=io.read(f, 28);
print s;
→ /*

Default autoexec script
// close the file
io.close(f)

There are two special files:
• const stdin = standard input Reads from the console.
• const stdout = standard output Writes to the console7

A file always has a character encoding scheme (CES) it uses when reading or
writing UNICODE R© characters. The following encoding schemes exist:
• const raw = 0

Only the low byte of each character is read or written, the high byte is as-
sumed zero. The number of bytes written corresponds exactly to the number
of characters. This is a good CES for reading and writing Latin characters,
and the default CES.
• const utf8 = 1

Characters are encoded using UTF-8. This is a compact variable length en-
coding properly encoding all characters, but the number of bytes written is not
easily predictable. Reading with the UTF-8 CES throws ExcInvalidUTF8
if a character sequence not conforming to the UTF-8 standard is encountered.
• const utf16le = 2

Characters are encoded using UTF-16 LE (little endian, low byte first). Each
character is read or written as two bytes, the number of bytes written is there-

6When an m script finishes or is closed, all its open streams are also closed. An open stream
is also closed when it is no longer referenced and reclaimed by the garbage collector.

7io.stdin and io.stdin represent the same stream; it exists under two different
names for historical reasons.

112 m Mobile Shell Reference Version 1.17

http://www.unicode.org

c© 2007 infowing AG 3.9. Module io: File and Stream Input/Output

fore twice the number of characters.
• const utf16be = 3

Like utf16le, but characters are encoded using UTF-16 BE (big endian,
high byte first).

io.append

• function append(path, ces=io.raw)→ Native Object

Permissions: Read+Write(path)

Opens a file to append to it, and returns its stream object. If the file exists, it
is opened for read and write access, and the file pointer is set to its end. If the
file doesn’t exist, this call is equivalent to io.create (p. 114).
If the file already exists, it is truncated to zero length.
Throws ErrPathNotFound if the directory does not exist.

f=io.append("activity.log");
// file pointer is at the end
print io.size(f), io.seek(f,0,true)
→ 1813 1813
io.close(f)

io.avail

• function avail(stream)→ Number

Returns the number of bytes which can be read without blocking. For disk
files, this is normally the number of bytes to the end of the file.
For io.stdin, this is the number of characters which can be read without
changing to input mode, i.e. calling a reading function: console input is nor-
mally only accepted during a read on io.stdin (when the state icon is
shown). See ui.keys (p. 141) for information on removing this restriction.

// read all remaining console input
len=io.avail(io.stdin);
s=io.read(io.stdin, len)

m Mobile Shell Reference Version 1.17 113

3. Library c© 2007 infowing AG

io.close

• function close(stream)→ null

Flushes and closes the file stream. Attempts to close io.stdin or
io.stdout are ignored.
See also io.flush (p. 115).

io.ces

• function ces(stream)→ Number

• function ces(stream, scheme)→ Number

Gets or sets the character encoding scheme of a file. With one argument,
returns the current CES of the file stream. With two arguments, returns the
old CES, and sets the CES of stream to scheme.
Throws ErrAccessDenied when attempting to change the CES of
io.stdin or io.stdout.

io.create

• function create(path, ces=io.raw)→ Native Object

Permissions: Write(path)

Creates a new, empty file in the directory and with the name specified by
path, and returns its stream object. The initial CES is set to ces. The file is
opened for read and write access.
If the file already exists, it is truncated to zero length.
Throws ErrPathNotFound if the directory does not exist.

f=io.create("sample.xml", io.utf8);
print f
→ 2
io.close(f)

114 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.9. Module io: File and Stream Input/Output

io.flush

• function flush(stream)→ Boolean

• function flush(stream,auto)→ Boolean

With one argument flushes the file stream, i.e. writes any pending data to the
underlying file or communication stream, and returns the auto flush state.
With two arguments, enables (auto=true) or disables (auto=false) auto
flushing, and returns the previous setting.
If auto flushing is enabled, the file will be flushed after each io.write...

and io.print... call. For optimum performance when writing a lot of
data, auto flushing should be disabled.
If a file has auto flushing enabled, calling io.flush to flush the file is never
required.
By default, auto flushing is enabled.

// disable auto flushing before writing a lot of data
old=io.flush(f, false);
for line in lines do
io.writeln(f, line)

end;
// restore the previous auto flush state
io.flush(f, old)

io.open

• function open(path, rw=false, ces=io.raw)→ Native
Object

Permissions: Read(path) / Read+Write(path)

Opens an existing file in the directory and with the name specified by path,
and returns its stream object. The initial CES is set to ces. If rw=false,
the file is opened for read access, and attempts to write to it will throw
ErrAccessDenied. If rw=true, the file is opened for read and write ac-
cess.
Throws ErrPathNotFound if the directory does not exist, and
ErrNotFound if the file does not exist.

m Mobile Shell Reference Version 1.17 115

3. Library c© 2007 infowing AG

f=io.open("sample.xml", false, io.utf8);
print f
→ stream@41255c
io.close(f)

io.print

• function print(stream, expression, ...)→ null

Writes a list of expressions as strings to file stream, using the current char-
acter encoding scheme. The expressions are converted to strings according to
the rules in section 2.7.10 (p. 27). The strings are written one after the other,
without separators or a terminator string.

old=13;
io.print(io.stdout, "old=", old, ", new: ");
→ old=13, new:

io.println

• function println(stream, expression, ...)→ null

Like io.print, but also writes a newline (CR and LF characters) after writ-
ing all arguments.

io.read

• function read(stream, len)→ String|null

Reads from stream until len characters have been read, or the file end has
been reached, and returns the characters read as a string.
len determines the number of characters read, not the number of bytes: with
encoding schemes different from io.raw, the number of bytes read may be
greater than len.
Advances the file pointer by the number of bytes read. Returns null if the
file pointer is already at the end of stream. Reading from io.stdin never
returns null, as the user is prompted for new data if there is no data to read.

116 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.9. Module io: File and Stream Input/Output

f=io.open("Hello.mp3");
// read first three bytes of MP3 file
print io.read(f, 3);
→ ID3
io.close(f)

See also: .code (p. 45)

io.readln

• function readln(stream, len=256)→ String|null

Reads from stream until len characters have been read, or until the next
end of line has been reached8, and returns the characters read as a string. The
string returned does not contain the end of line mark.
len determines the number of characters read, not the number of bytes: with
encoding schemes different from io.raw, the number of bytes read may be
greater than len.
Advances the file pointer by the number of bytes read. Returns null if the
file pointer is already at the end of stream.

f=io.open(system.appdir + "autoexec.m");
// read the first three lines
for i=1 to 3 do
print io.readln(f)

end
→ /*

Default autoexec script for interactive shells.

(c) 2005 infowing AG, CH-8703 Erlenbach
io.close(f)

io.readm

• function readm(stream)→ anytype

Reads the next m data item from stream, and returns it. The data must have
8end of line is marked by CR-LF, LF, or CR.

m Mobile Shell Reference Version 1.17 117

3. Library c© 2007 infowing AG

been written using io.writem (p. 120).
Advances the file pointer by the number of bytes read.
The current encoding scheme does not affect how the input data is interpreted.
Throws ErrEof if end of file is reached during reading. Throws ErrCorrupt
if the data in the file is invalid.
See io.writem (p. 120) for an example.

io.seek

• function seek(stream, pos, current=false)→ Number

Sets the file pointer position of file stream to pos. If current=false, pos
is an absolute position and must not be negative. If current=true, pos is
relative to the current position and may also be negative.
The file pointer position is always in bytes, independent of the current char-
acter encoding scheme.
Returns the new absolute file position.

io.seek(f, 0); // seek to beginning of file
io.seek(f, io.size(f)); // seek to end of file
io.seek(f, -40, true)); // rewind 40 bytes
current=io.seek(f, 0, true); // get current position

io.size

• function size(stream)→ Number

Returns the size of file stream, in bytes.
See also: files.size (p. 86)

io.timeout

• function timeout()→ Number

• function timeout(ms)→ Number

Gets or sets the timeout used in reads and writes. Without an argument, re-
turns the current timeout in milliseconds. With one argument, returns the

118 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.9. Module io: File and Stream Input/Output

old timeout, and sets the new timeout to ms. Setting the timeout to zero (the
default) or a negative value disables timeouts, i.e. I/O operations can block
indefinitely.
The timeout is used in all following reads and writes: whenever an opera-
tion does not complete within the given number of milliseconds, it throws
ErrTimedOut.

// give the user three seconds to input data
io.timeout(3000);
try
s=io.readln(io.stdin)
// process input

catch e by
// if it wasn’t a timeout, rethrow e
if index(e, "ErrTimedOut") # 0 then throw e end;
print "You waited too long..."

end

io.wait

• function wait(streams)→ Native Object

Waits until at least one stream in the array streams has at least one byte
to read from (i.e. io.avail (p. 113) returns a value greater than zero), and
returns this stream.
io.wait is most useful when simultaneously processing several input
streams obtained with modules from the extended library (TCP/IP, Bluetooth,
IPC), as it avoids the need for a “busy waiting loop”.

ipconn=...
btconn=...
case io.wait([io.stdin, ipconn, btconn])
in io.stdin:
// read from the console

in ipconn:
// read from ipconn

in btconn:
// read from btconn

end

m Mobile Shell Reference Version 1.17 119

3. Library c© 2007 infowing AG

io.write

• function write(stream, string)→ null

Writes the string string to file stream, using the current character encoding
scheme.

f=io.create("sample.txt", io.utf8);
s="un château français";
io.write(f, s);
print len(s), io.size(f)
→ 19 21

io.writeln

• function writeln(stream, string)→ null

Writes the string string, followed by a newline (CR and LF characters) to
file stream, using the current character encoding scheme.

f=io.create("sample.txt", io.utf8);
s="un château français";
io.writeln(f, s);
print len(s), io.size(f)
→ 19 23

io.writem

• function writem(stream, data)→ null

Writes data to file stream, so it can be read back in via io.readm (p. 117).
data can have any m type: number, string, boolean, array, or null. Function
references and native objects can neither be written nor read.
If data is an array, elements of it (or its subarrays) which are referenced
multiple times are only written once and correctly resolved when they are read
back in. This permits to properly write (“serialize”) recursive data structures
(which in m are always arrays with elements referencing the array itself).
The current encoding scheme does not affect the raw data written.
Throws ErrArgument if data is of a type which cannot be written.

120 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.10. Module math: Mathematical Functions

// write a string
data1="Simply a string";
// and a more complex data structure
data2=["One":1, "Two":2.5, false, null, "V":[8,9,10]];
f=io.create("sample.dat");
io.writem(f, data1);
io.writem(f, data2);
io.close(f);
// read it back in
f=io.open("sample.dat");
print io.readm(f)
→ Simply a string
a=io.readm(f);
print a, keys(a)
→ [1,2.5,false,null,Array<3>] [One,Two,null,null,V]
io.readm(f)
→ ErrEof thrown

3.10 Module math: Mathematical Functions

This module provides standard mathematical functions.

math.abs

• function abs(x)→ Number

Returns the absolute value of x.

math.acos

• function acos(x)→ Number

Returns the arcus cosine (in radians) of x.
Throws ErrArgument if abs(x) > 1.

m Mobile Shell Reference Version 1.17 121

3. Library c© 2007 infowing AG

math.asin

• function asin(x)→ Number

Returns the arcus sine (in radians) of x.
Throws ErrArgument if abs(x) > 1.

math.atan

• function atan(x)→ Number

Returns the arcus tangent (in radians) of x.

math.ceil

• function ceil(x)→ Number

Returns the smallest integer greater than or equal to x.

print math.ceil(3)
→ 3
print math.ceil(3.4)
→ 4
print math.ceil(-3.4)
→ -3

math.cos

• function cos(x)→ Number

Returns the cosine of x (in radians).

math.exp

• function exp(x)→ Number

Returns ex

122 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.10. Module math: Mathematical Functions

math.floor

• function floor(x)→ Number

Returns the largest integer less than or equal to x.

print math.floor(3)
→ 3
print math.floor(3.4)
→ 3
print math.floor(-3.4)
→ -4

math.log

• function log(x)→ Number

Returns the natural logarithm of x.

math.pow

• function pow(x, y)→ Number

Returns xy .
Throws ErrArgument if x < 0 and y is not an integer.
Throws ErrOverflow if x = 0 and y < 0.

print math.pow(2, 0.5)
→ 1.4142135624
print math.pow(-5, 3);
→ -125

math.random

• function random()→ Number

• function random(seed)→ Number

Returns a random number uniformely distributed in the interval 0 (inclusive)
to 1 (exclusive). With an argument, initializes the sequence of random num-
bers with seed. seed can be any number.

m Mobile Shell Reference Version 1.17 123

3. Library c© 2007 infowing AG

The default initialization is based on the current time.

math.random(0);
for i=1 to 3 do
print math.random()

end
→ 0.0038488093

0.6952766137
0.2338878537

math.round

• function round(x, decimals=0)→ Number

Rounds x to decimals decimal digits.

print math.round(4.5)
→ 5
print math.round(math.pi, 4)
→ 3.1416

math.sin

• function sin(x)→ Number

Returns the cosine of x (in radians).

math.sqrt

• function sqrt(x)→ Number

Returns the square root of x.
Throws ErrArgument if x < 0.

math.tan

• function tan(x)→ Number

Returns the tangent of x (in radians).

124 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.11. Module sms: Short Messages

math.trunc

• function trunc(x)→ Number

Returns the integral part of x.

print math.trunc(3)
→ 3
print math.trunc(3.4)
→ 3
print math.trunc(-3.4)
→ -3

math Constants

• const e = 2.718281828459045 Euler constant.
• const pi = 3.141592653589793 π.

3.11 Module sms: Short Messages

This module supports sending and receiving of short messages.
Messages are identified by numbers. These numbers are used to retrieve and
update message contents, and to delete messages.
When a function of the module is called for the first time, it starts listening
for incoming messages and enqueues their numbers. Calling sms.receive

will return these numbers. Messages received earlier can be retrieved from
the inbox.
Messages longer than the maximum length (160 characters in the default al-
phabet) can also be sent and received. They are transmitted as “concatenated
SMS”, but the module handles this automatically.
The typical sequence to consume messages starting with a certain token
(//tok in our example) is:

m Mobile Shell Reference Version 1.17 125

3. Library c© 2007 infowing AG

nr=sms.receive(); // wait for a new message
msg=sms.get(nr); // get the message
words=split(msg["text"]); // split the text into words
if len(words)>0 and words[0] = "//tok" then
// first word is //tok, delete it from inbox
sms.delete(nr);
// process message

end

sms.delete

• function delete(msgnum)→ null

Permissions: WriteApp+FreeComm

Delete the message with number msgnum from the inbox.
Throws ErrNotFound if the message with this number does not exist.

// delete all SMS inbox messages older than a week
lastweek=time.get()-7*24*3600;
for id in sms.inbox() do
if sms.get(id)["time"]<lastweek then
sms.delete(id)

end
end

sms.get

• function get(msgnum)→ Array

Permissions: ReadApp+FreeComm

Get the contents of the message with number msgnum. The message contents
are returned as an array with the following keys:

Key Contents
sender The phone number of the sender of the message.
text The text of the message.
time The time stamp of the message, as seconds since

the start of year 0. See also module time (p. 131).
unread true if the message is still unread, false if it has

been seen.

126 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.11. Module sms: Short Messages

Throws ErrNotFound if the message with number msgnum does not exist.

// print all messages in the SMS inbox
for id in sms.inbox() do
print sms.get(id)

end
→ [248,Delivery confirmation,63277873561,false]

...

sms.inbox

• function inbox()→ Array

Permissions: ReadApp+FreeComm

Gets the ids of all SMS messages in the inbox.

print sms.inbox()
→ [1049241,1049289,1049292]

sms.receive

• function receive(timeout=-1)→ Number|null

Permissions: ReadApp+FreeComm

Receives a new message and returns its id. If there is no message, waits until
one arrives. If timeout>=0 and timeout milliseconds have passed without
receiving anything, returns null.

// quickly check whether there is a new message
id=sms.receive(0);
if id#null then
msg=sms.get(id);
// process msg

end

m Mobile Shell Reference Version 1.17 127

3. Library c© 2007 infowing AG

sms.send

• function send(recipient, message, bits=7)→ null

• function send(recipients, message, bits=7)→ null

Permissions: CostComm

Sends a short message to one or several recipients. A single recipient is
specified as a single phone number string, multiple recipients are specified
as an array of phone number strings.
bits indicates the number of bits used to encode a character, thus limiting the
length of a simple message. Longer messages will be concatenated from sev-
eral simple messages, thus increasing transmission cost. The allowed values
are:
bits Meaning Max. length

7 Default text alphabet 160
8 Data alphabet 140

16 Unicode alphabet 70
This function does not return before the message has been sent (or an error
occurs).

// send a silly message to two people
sms.send(["+41797654321", "+393401234567"],

"Good morning!")

sms.set

• function set(msgnum, message)→ null

Permissions: WriteApp+FreeComm

Updates the short message with number msgnum with the fields from
message. The keys listed in sms.get (p. 126) must be used. The sender
and text of the message will only be changed in the SMS inbox summary;
they cannot be changed in the actual message.

// mark all messages in the inbox as unread
for id in sms.inbox() do
sms.set(id, ["unread":true])

end

128 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.12. Module system: System Related Functions

3.12 Module system: System Related Func-
tions

This module provides mainly information about the m runtime system and
the device m is running on. Its functions are not guaranteed to portable, as
they are tied to the Symbian OS platform.

system.gc

• function gc()→ Number

Explicitly request garbage collection, reclaiming unused memory of this pro-
cess.

system.hal

• function hal(index)→ Number

• function hal(index, value)→ Number

Obtain device specific information. With one argument, returns the value of
attribute number index. With two arguments, sets the the value of attribute
number index, and returns the old value.
Throws ErrNotSupported if the attribute cannot be read (or modified).
Please refer to Symbian OS documentation for a complete list of attributes.
The following table just lists a few:

Index Meaning
5 Machine UID

11 CPU frequency in kHz
31 Display width in pixels
32 Display height in pixels
35 Display colors
68 System language: 1=english, 2=french, 3=german, ...
72 System drive: 0=A:, 1=B:, 2=C:, ...

m Mobile Shell Reference Version 1.17 129

http://www.symbian.com
http://www.symbian.com

3. Library c© 2007 infowing AG

system.mem

• function mem()→ Number

• function mem(expression)→ Number

The first form returns the size of memory for data used by m, and all its
processes. This includes the 60 to 100 kBytes of application memory.
The second form returns the size of memory allocated to expression, or
what would be reclaimed if expression were no longer used.

print system.mem()
→ 91984
system.gc(); // collect all garbage
print system.mem(array.create(40, 40, 0))
→ 13964
print system.gc() // reclaim array
→ 13956

system.verbosegc

• function verbosegc()→ Number

• function verbosegc(level)→ Number

Gets and sets the verbosity level of garbage collection:
0 Garbage collection works silently. This is the default.
1 Whenever garbage collection occurs, a short message with the

size of the space reclaimed is printed on the console.
2 Whenever garbage collection occurs, a long message with the

size and number of cells of the space in use and the space re-
claimed is printed, together with the total data memory in use by
m.

130 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.13. Module time: Time and Date Functions

system.verbosegc(2);
for i=1 to 5 do
a=array.create(100, 100, 0)

end;
→ GC: used=81K/104, freed=0K/0, total=133K

GC: used=162K/205, freed=0K/0, total=214K
GC: used=162K/205, freed=81K/202, total=214K
GC: used=162K/205, freed=81K/202, total=214K
GC: used=162K/205, freed=81K/202, total=214K

system Constants

• const appdir = c:\system\apps\mShell\

The directory where the m application files are installed.
• const dev = Device (version)

The device type and, in parentheses, the manufacturer software version. If the
device name is just a hexadecimal number (e.g. 0x101fb2ae), please add a
bug report citing this number and indicating the device type.
• const docdir = c:\documents\mShell\

The directory where the m document files (scripts and module sources) are
stored.
• const os = Symbian

The operating system of the device.

3.13 Module time: Time and Date Func-
tions

This module provides access to the real time clock. A given point in time in
m is always measured as the number of seconds since the beginning of year
0 (assuming the Gregorian calendar).

time.dayofweek

• function dayofweek(secs=time.get())→ Number

Gets the day of the week of the point in time defined by secs, according to

m Mobile Shell Reference Version 1.17 131

3. Library c© 2007 infowing AG

the following table:
0 Monday
1 Tuesday
2 Wednesday
3 Thursday
4 Friday
5 Saturday
6 Sunday

print time.dayofweek()
→ 0
print time.dayofweek(time.num(’2005-05-13’))
→ 4

time.get

• function get()→ Number

Gets the local time in seconds since 0000-01-01 00:00:00. The numeric res-
olution is down to microseconds, but the actual resolution may be be coarser.

print time.get()
→ 63279080895
print str(time.get(), 1, 4)
→ 63279080895.9844

See also: .date (p. 45)

time.set

• function set(secs)→ null

Sets the local time in seconds since 0000-01-01 00:00:00 to secs.

time.set(time.get() + 60*60) // advance by 1 hour

132 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.13. Module time: Time and Date Functions

time.num

• function num(text, format="YMDhmst")→ Number

Converts the string text into seconds since 0000-01-01 00:00:00, according
to the format format.
The format string defines the order of the date and time parts in text. Each
part finishes if either a character which is not a digit is encountered, or if the
part’s maximum length is reached. The parts are denoted by the following
characters:

Character Max. length Meaning
Y 4 Year.
M 2 Month.
D 2 Day.
h 2 Hour (24 hour representation).
m 2 Minute.
s 2 Second.
t 3 Fraction of a second.

One and two digit years are assumed to be in the 21st century, i.e. 2000 is
added to them.
Throws ErrArgument if format contains a character other than those above.

print time.get(), time.num(date())
→ 63279080895 63279080895
t=time.num("05-03-27")-40*24*3600;
print time.str(t)
→ 2005-02-15 00:00:00
t=time.num(’19:14:18.5’, ’hmst’)+124.7
print time.str(t,’hh:mm:ss:ttt’)
→ 19:16:23.200

See also: time.str (p. 133)

time.str

• function str(secs, format="YYYY-MM-DD hh:mm:ss")→
String

Converts the seconds since 0000-01-01 00:00:00 secs into a string, accord-
ing to the format format.

m Mobile Shell Reference Version 1.17 133

3. Library c© 2007 infowing AG

Each character in the format string will be converted into a character in the
resulting string, according to the following table:
Y Next digit of year
M Next digit of month
D Next digit of day
h Next digit of hour
m Next digit of minute
s Next digit of second
t Next digit of fractions of second

The format is converted from right to left, except for t.

print date(), time.str(time.get())
→ 2005-03-14 18:28:15 2005-03-14 18:28:15
print time.str(time.get(), "hh:mm:ss.ttt")
→ 18:28:15.424
print time.str(time.get(), "DD.MM.YY")
→ 14.03.05

See also: time.num (p. 133), .date (p. 45)

time.utc

• function utc()→ Number

Gets the real time in the UTC (Universal Time Coordinate) time zone. This
equals Greenwich local time, excluding any shift by daylight saving time.
The difference between local time and UTC time is the local time zone:

print time.get() - time.utc()
→ 3600

time.weekofyear

• function weekofyear(secs=time.get())→ Number

Gets the week of the year of the point in time defined by secs. The first week
in the year is the first week having four or more days in the year defined by
secs.

134 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.14. Module ui: User Interface Functions

print time.weekofyear()
→ 11
print time.weekofyear(time.num(’2005-01-01’))
→ 53

3.14 Module ui: User Interface Functions

This module provides functions to display standard dialogs and menus and to
modify the m user interface.

ui.busy

• function busy(activity)→ null

• function busy()→ null

With one argument, shows a popup window with the text activity, indi-
cating that something is going on. Without an argument, discards the popup
window.
Both calls return immediately.

ui.busy("Wait five seconds"); // show a popup window
sleep(5000);
ui.busy() // discard the window

Series 60 sample screen UIQ sample screen

ui.cmd

• function cmd(timeout=-1)→ Number|String|Array|null

This function waits for a user command or action:

m Mobile Shell Reference Version 1.17 135

3. Library c© 2007 infowing AG

• A key press, release, or complete keystroke: the function returns the
positive scan code for a key press, the negative scan code for a release,
or the key code for a keystroke.

For characters, both scan codes and key codes typically correspond
to their UNICODE R© number, and can thus be converted with .char

(p. 44). Codes for navigation and system keys are device specific.
Some important keys are defined as constants (see 3.14 (p. 148)).

ui.keys (p. 141) must have been called before to declare interest in
such keyboard input.

• A script specific menu command being selected by the user: the func-
tion returns the corresponding string from the menu.

ui.menu (p. 143) must have been called before to set up the menu.

• The user touches the screen with the pointing device or moves it: the
function returns an array with the following elements:

Key Meaning
x x-coordinate of pointer
y y-coordinate of pointer
buttons mask of pressed buttons: bit 0 for button 1, bit 1

for button 2, bit 2 for button 3.

ui.ptr (p. 146) must have been called before to declare interest in
such pointer input.

If a monitored user action (keystroke, menu selection, pointing) occurred be-
fore ui.cmd is called, it immediately returns the corresponding result.
If timeout>=0 and timeout milliseconds have passed without response
from the user, null is returned.
Keyboard, menu and pointer can all be monitored together in a single ui.cmd
call.
See ui.keys (p. 141) for an example using the keyboard, ui.menu (p. 143)
for an example using menus, ui.ptr (p. 146) for an example using the
pointer.

136 m Mobile Shell Reference Version 1.17

http://www.unicode.org

c© 2007 infowing AG 3.14. Module ui: User Interface Functions

ui.confirm

• function confirm(question, title="mShell")→ Boolean

Shows a simple dialog displaying question in a dialog with title title.
The dialog asks the user for confirmation, presenting two buttons or soft keys
with the options “yes” and “no”.
Returns true if the user answers “yes”, and false if the user answers “no”.

name="labels.txt";
if ui.confirm("Really delete " + name + "?") then
files.delete(name)

end

Series 60 sample screen UIQ sample screen

ui.error

• function error(message)→ null

Displays a dialog with the error message, waiting until the user presses the
“continue” button or a key.

adr="ma@dalton-brothers.com";
ui.error("Something went wrong.\nPlease e-mail " + adr)

m Mobile Shell Reference Version 1.17 137

3. Library c© 2007 infowing AG

Series 60 sample screen UIQ sample screen

ui.fonts

• function fonts()→ Array

Gets an array with the available fonts. Each font is described by a four ele-
ment array:

Index Content Type
0 Font name String

1 Minimum font size in pixels Number

2 Maximum font size in pixels Number

3 Font is scalable Boolean

print ui.fonts()[0]
→ SwissA,10,19,false

ui.form

• function form(items, title="mShell")→ Array|null

Displays a dialog to edit the data in items, with the given title. The keys of
items will be used as labels (prompts) in the form. Array elements without
a key are shown as read-only texts.
The following data types can be edited:

138 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.14. Module ui: User Interface Functions

Data Type Field Type
String without \n Single line text editor
String with \n Multi-line text editor9

Number Number editor (floating point)
Boolean Check box or popup yes/no choice
Array Combo box or popup multiple choice

The initial values shown in the form are the values given in items, except for
an array value, where initially the first array element is selected.
If the user presses Ok’, this function returns an array with the values entered
or chosen by the user. If the user presses Cancel, null is returned.
Setting the title is not supported on Nokia devices and silently ignored.

old=["Name":"",
"Details:", // just a label
"Age":32,
"Member":false,
"Beverage":["Water", "Beer", "Wine", "Whiskey"],
"Comment":"\n"]; // a multiline field

new=ui.form(old, "Member Card");
print new
→ [Lucky Luke,35,false,Beer,He’s a poor,

lonesome cowboy]
print keys(new)
→ [Name,Age,Member,Beverage,Comment]

m Mobile Shell Reference Version 1.17 139

3. Library c© 2007 infowing AG

Series 60 sample screen UIQ sample screen

ui.idletime

• function idletime(reset=false)→ Number

Returns the number of milliseconds since the last user activity (keypress or
pointer action) on the device. If reset=true, resets the inactivity timer to
zero.

// after about a minute of inactivity, beep
sharp=false;
while true do
if ui.idletime() < 60000 then
sharp=true

elsif sharp then
audio.beep(); sharp=false

end;
sleep(2000)

end

140 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.14. Module ui: User Interface Functions

ui.keys

• function keys(pressAndRelease,allowFocus=false)→ null

• function keys()→ null

Declares interest in keyboard events, for processing by ui.cmd (p. 135).
Whenever the user performs a keyboard action, the scan code or key code
will be returned by the currently waiting or a next call to ui.cmd.
If pressAndRelease=false, ui.cmd will return key codes for complete
keystrokes.
If pressAndRelease=true, ui.cmd will return positive scan codes for key
presses and negative scan codes for key releases (each keystroke typically
produces two events).
If allowFocus=true, the console will obtain the keyboard focus, letting it
interpret keystrokes:

• On UIQ devices, the virtual keyboard will be active, and writing a char-
acter with the pen will also produce a keystroke.

• On Series 60 devices, the keys will be interpreted as if writing a text.

Keyboard events will be ignored by ui.cmd after calling ui.keys without
arguments.
Each call to ui.keys flushes the internal keyboard buffer.
The following example outputs keystrokes until the “go” key is pressed.

ui.keys(false); // return keystrokes
do
c=ui.cmd();
print "pressed",c,"=",char(c)

until c=ui.gokey
→ pressed 55 = 7

pressed 42 = *
pressed 63557 =

m Mobile Shell Reference Version 1.17 141

3. Library c© 2007 infowing AG

ui.large

• function large()→ Boolean

• function large(enabled)→ Boolean

Compatibility of function ui.large

Sony Ericsson phones UI size change is not possi-
ble; function always returns
false.

Without arguments, returns the current m application view size: false if the
view size is small (title pane shown), true if the view size is large (title pane
hidden).
With one argument, return the current view size, and sets the new view size:
with enabled=true, changes the view size to large, with enabled=false,
changes the view size to small. This has the same effect as toggling the view
size from the menu: it changes the view size for the entire m application, in
all processes.

ui.list

• function list(items, multiple=false, init=[],
title="mShell")→ Array|null

Displays a list dialog to choose from the data in items:

• If multiple=false, only one item can be selected. This is usually
simply the highlighted (current) item.

• If multiple=true, multiple items can be selected. These are usually
the marked items.

Initially, the items indexed in init will be selected (or marked).
If the user presses “ok”, this function returns the indices of the items selected
by the user, i.e. an array of numbers indexing into items. If the user presses
“cancel”, null is returned.
title is not supported on Nokia devices and silently ignored.

142 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.14. Module ui: User Interface Functions

f=["apple.jpg", "apricot.jpg", "peach.jpg",
"pear.jpg", "prune.jpg"];

print ui.list(f, true, [1,3], "Fruit Files")
→ [2,3]

Series 60 sample screen UIQ sample screen

ui.menu

• function menu(title, commands, keepold=true,
interrupt=false)→ null

• function menu()→ null

Replace the standard “Process” menu by a new menu, with title and the
menu items defined by array commands, for processing by ui.cmd (p. 135).
If keepold=true, the standard process menu will be added at the end, as
a submenu. If keepold=false, the standard functions are not available,
preventing the user from easily stopping or closing the running process.
If interrupt=true, a menu selection by the user will interrupt a
waiting function call (except ui.cmd) with ExcInterrupted. If
interrupt=false, function calls will not be interrupted, and the menu se-
lection will go unnoticed until ui.cmd is called.

m Mobile Shell Reference Version 1.17 143

3. Library c© 2007 infowing AG

Without arguments, restores the standard menu.
Whenever the user selects a menu item, the item will be returned by the cur-
rently waiting or the next call to ui.cmd (p. 135).

ui.menu("Colors", ["Red", "Green", "Blue", "End"]);
while true do
c=ui.cmd();
if c="End" then break end;
print c,"chosen"

end

Series 60 sample screen UIQ sample screen

ui.mfont

• function mfont()→ Array

• function mfont(font)→ Array

Gets or sets the font used in all m consoles. Without parameter, returns the
currently used font as an array with the following elements:

Index Meaning Type
0 Font name String

1 Font size in pixels Number

2 Bold font Boolean

3 Italic font Boolean

144 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.14. Module ui: User Interface Functions

If the parameter font is a string, set the font to the one with the given name,
without changing the other attributes.
If the parameter font is an array, the array must have the elements listed
above, and the font is set accordingly.

old=ui.mfont();
print old
→ [Monospace,11,false,false]
// use a proportional sans serif font
ui.mfont("SwissA");
// make it large and bold
ui.mfont(["SwissA", 16, true, false])

ui.msg

• function msg(message, title="mShell")→ null

Displays a dialog with message, waiting until the user presses the “continue”
button or a key. message can have multiple lines, separated by \n characters.

ui.msg
("This is - for a cellphone - quite a long message."
+ "\nIt also has a second line.",
"Long message");

Series 60 sample screen UIQ sample screen

m Mobile Shell Reference Version 1.17 145

3. Library c© 2007 infowing AG

ui.pfonts

• function pfonts()→ null

Prints a table of the available fonts, with the following columns:

• Font name.

• Minimal and maximal size in pixels, separated by -.

• Number of scaling steps from minimal to maximal size, prefixed by x.

• Font attributes: p: proportional, s: serif, y: symbol, S: scalable.

ui.pfonts()
→ SwissA 10-19x4 p---

Courier 8- 8x1 -s--
Symbol 11-16x2 p-y-
Calc 13-35x3 --y-
Eikon 15-15x1 --y-
Calcinv 14-14x1 --y-
Digital 35-35x1 --y-

ui.ptr

• function ptr(absoluteCoord)→ null

• function ptr()→ null

Declares interest in pointer events, for processing by ui.cmd (p. 135). When-
ever the user performs a pointing device action, the pointer coordinate and
button will be returned by the currently waiting or a next call to ui.cmd.
To generate these events, there must be a pointing device: on UIQ devices,
the pen corresponds to button one. However, unlike a mouse, the pen only
generates events while button is pressed, i.e. the pen touches the screen10.
If absoluteCoord=true, ui.cmd will return absolute coordinates (the ori-
gin is the upper left corner of the screen).
If absoluteCoord=false, ui.cmd will return relative coordinates (the ori-
gin is the upper left corner of the console, or graph view).

10mVNC has limited support for the Series 60 pointer via the mouse.

146 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 3.14. Module ui: User Interface Functions

Pointer events will be ignored by ui.cmd after calling ui.ptr without argu-
ments.
The following example outputs the position of the pointing device, until the
pen goes up (button one is no longer pressed) in the upper left corner of the
console.

ui.ptr(false); // return relative coordinates
do
c=ui.cmd();
print "at",c["x"],c["y"]

until c["x"]<=10 and c["y"]<=10 and c["buttons"]=0
→ at 123 116

at 123 146
at 91 142
...
at 11 7
at 8 7
at 7 7

ui.query

• function query(prompt, title="mShell", value="")→
String|Number|null

Displays a dialog querying for a single text input. The input field is initialized
with value, and labelled with prompt.
If value is a number, the input field is numeric and does not allow non-
numeric characters. The only valid characters are 0123456789-+,.Ee.
The return value will also be numeric in this case. The function throws
ExcInvalidNumber if the format of the number entered is not valid.
If the user presses “ok”, this function returns the value entered by the user. If
the user presses “cancel”, null is returned.
The same effect can be achieved with ui.form (p. 138), but ui.query is
simpler to use.

m Mobile Shell Reference Version 1.17 147

3. Library c© 2007 infowing AG

old="labels.txt";
new=ui.query("New name", "Rename", old);
if new#null and new#old then
files.rename(old, new)

end

Series 60 sample screen UIQ sample screen

ui Constants

These constants define the key codes (for keystrokes) of the navigation key-
pad typically found on Nokia phones, and the Jog Dial on Sony Ericsson
phones.
• const downkey = down key code The “down” navigation key.
• const gokey = go key code The “go” or “confirm” navigation key.
• const leftkey = left key code The “left” navigation key.
• const rightkey = right key code The “right” navigation key.
• const upkey = up key code The “up” navigation key.

148 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG

4. Interactive Shells
m cannot only execute complete scripts, it can also be used interactively, as a
shell. When working in shell mode, there are a few differences to normal m
scripts:

• m statements are executed interactively: m code can be entered and
is executed immediately. Global variables and functions are preserved
between executions.

• The syntax allows some simplifications (see section 4.1 (p. 149)).

• Each time a shell is created, it loads and executes autoexec.m before
prompting the user. The script is first searched among the ordinary
scripts in system.docdir (p. 131). If it is not found, the default script
in system.appdir (p. 131) is executed.

4.1 Simplified Syntax for Interactive Use

Since input capabilities of cellphones are poor, interactive shells support a
simplified syntax for function calls, and automatic output of computed ex-
pressions:

• A single Expressionwill be executed as ’print’ Expression, un-
less it is null:

m>0.85*23.10
→ 19.635
m>use math as m
m>m.sin(m.pi/4)
→ 0.7071067812

• A SimpleFunctionCall calls a function with only string or number
literal parameters, and options defined for the function.

m Mobile Shell Reference Version 1.17 149

4. Interactive Shells c© 2007 infowing AG

– Unquoted words (sequences not containing white space) on
the command line which are not keywords (see appendix A.2
(p. 161)) and are not starting with a digit or separator are inter-
preted as string parameters.

– Numbers are interpreted as numeric parameters.

– Options for optional parameters (see section 2.8 (p. 29)) can be
specified anywhere with a preceding slash. If an equal sign fol-
lows, the following word or number is assigned to the correspond-
ing parameter. If no equal sign follows, true is assigned to the
corresponding parameter.

– Commas to separate the parameters are not permitted.

Again, the function result is printed if it is not null:

m>date // maps to date()
→ 2005-02-07 11:03:07
m>dir c:*.m/r // maps to dir(’c:*.m’, true)
→ C:\system\apps\mShell\autoexec.m

C:\documents\mShell\Jukebox.m

Simple function calls can only be used to call functions with parameters
which are string or number literals.

SimpleFunctionCall :=
[ModulePrefix] Identifier {SimpleParam | SimpleOption} .

SimpleParam :=
SimpleChar {SimpleChar} | StringLiteral | NumberLiteral .

SimpleOption := ’/’ (IdentifierChar | Digit) [’=’ SimpleParam] .
SimpleChar :=
(printable ISO-8859-1 char except white space and ’/’) .

4.2 Shell Builtin Functions

autoexec.m defines a number of function for interactive use. Most are just
wrappers around existing functions, to avoid typing longer names. With these
functions, files on the phone can be easily manipulated:

150 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 4.2. Shell Builtin Functions

// list all JPG files on the current drive
dir *.jpg/r/l
→ -- 05-08-09 2966 \documents\mShell\GraphTest.jpg

-- 11:37:02 17909 \Nokia\Images\FE_img\FEscr(0).jpg
...

// copy the JPG files in \documents\mShell to drive e:
cp \documents\mShell*.jpg e:
→ 1
// search for the mShell properties file
dir *.prp/r
→ \System\Apps\mShell\mShell.prp
// show its contents
type \system\apps\mShell\mShell.prp
→ mfont=LatinPlain12

outsize=20000
keep=busy

If a customized autoexec.m in system.docdir is created without incor-
porating the original script, these function are no longer available.

.cp

• function cp(src, dst, recursive=false)→ Number

/r:recursive

Copies a file, files matching a pattern, or an entire directory tree. Wrapper for
files.copy (p. 80).

.del

• function del(pattern, recursive=false)→ Number

/r:recursive

Deletes a file, files matching a pattern, also in complete directory tree. Wrap-
per for files.delete (p. 80).

m Mobile Shell Reference Version 1.17 151

4. Interactive Shells c© 2007 infowing AG

.dir

• function dir(pattern="*", recursive=false, long=false,
hidden=false, modified=0)→ null

/h:hidden

/l:long

/m:modified

/r:recursive

List files matching pattern on standard output. If pattern is a directory,
lists all files in it. Options are the following:

• With /h (hidden=true), also lists hidden files and directories.

• With /l (long=true), lists files and directories in a long format, in-
cluding readonly and hidden attributes and modification date (format
YY-MM-DD or hh:mm:ss).

• With /m=secs (modified=secs), lists only files which were modified
within the last secs seconds.

.edit

• function edit(name)→ null

Loads a file into the builtin editor and shows it. Wrapper for files.edit
(p. 81).

.exit

• function exit()→ null

Exit this shell. This is equivalent to closing it. This function is only available
if module proc is available.

.md

• function md(path, all=false)→ Number

/a:all

152 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG 4.2. Shell Builtin Functions

Creates a directory or directories. Wrapper for files.mkdir (p. 82).

.mv

• function mv(src, dst, recursive=false)→ Number

/r:recursive

Moves a file, files matching a pattern, or an entire directory tree. Wrapper for
files.move (p. 82).

.rd

• function rd(path, recursive=false)→ Number

/r:recursive

Removes a directory or an entire directory tree. Wrapper for files.rmdir
(p. 83).

.ren

• function ren(old, new)→ Number

Renames a single file. Wrapper for files.rename (p. 83).

.run

• function run(script, show=false)→ null

/s:show

Run another m script. If show=true, the script’s console is shown. This
function is only available if module proc is available.

.send

• function send(name, subject=null)→ null

Interactively sends a file over a channel chosen by the user. Wrapper for
files.send (p. 85).

m Mobile Shell Reference Version 1.17 153

4. Interactive Shells c© 2007 infowing AG

.type

• function type(file, utf16=false, tail=false)→ null

/u:utf16

/t:tail

Writes the contents of file to standard output.
If utf16=true, assumes the file to be UTF-16 little endian encoded. Other-
wise, raw encoding is assumed.
If tail=true, only outputs the last 300 bytes. If tail=n where n is a num-
ber, outputs the last n bytes.

154 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG

5. SMS Control
If the m Supervisor & Viewer application is installed and licensed, the m ap-
plication can be controlled via SMS commands. Commands must be prefixed
by the smskey configured in the properties (see section A.3 (p. 161)).
The available SMS commands are:

• smskey run script args: starts the m application if it is not al-
ready running, then starts the script script with the arguments args.
Use function proc.args to get the arguments from within the script.
If the script is already running, this command is ignored.

• smskey shutdown: stops all scripts and exits the m application. If m
is not running, this command is ignored.

• smskey start: starts the m application. If m is already running, this
command is ignored.

• smskey status: m status inquiry, replies with an SMS describing
the status of the m application and some GSM information. If m is
running, the reply will look like:

m status: running, mem=mem,
net=mcc,mnc, loc=lac,cid, sig=signal

If m is not running, the reply will look like:

m status: NOT running (category reason),
net=mcc,mnc, loc=lac,cid, sig=signal

The meaning of the fields is the following:

m Mobile Shell Reference Version 1.17 155

5. SMS Control c© 2007 infowing AG

mem bytes of memory used by m
category m exit category (if panicked)
reason m exit reason (if panicked)
mcc GSM mobile country code
mnc GSM mobile network code
lac GSM location area code
cid GSM cell id
signal GSM signal strength

• smskey status phone: like status above, but the response is sent
to phone number phone. phone must not contain white space.

• smskey stop script: stops execution of script script. If script
is not running, this command is ignored.

The following examples require the smsctrl property to be enabled, and
smskey to be set to mshell:

1. SMS to start the m application:

mshell start

2. SMS to start the Supervisor script, passing it 0769988776 as an
argument:

mshell run Supervisor 0769988776

3. SMS to check the status of the m application:

mshell status
→ m status: NOT running (E32USER-CBase 71),

net=228,115, loc=1616,17689, sig=3

m is not running because it crashed with a E32USER-CBase 71 panic.
The phone is somewhere near cell 17689 in area 1616 of the Swisscom
GSM network.

156 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG

A. Appendix

A.1 Exception Tags

This section lists the exceptions tags with their english error message.

Environment Exceptions

Environment exceptions are usually thrown by the underlying operation sys-
tem, e.g. when trying to access a file which does not exist.

• ErrAbort: Operation aborted.

• ErrAccessDenied: Access denied.

• ErrAlreadyExists: File already exists.

• ErrArgument: Invalid function argument.

• ErrBadHandle: Object handle is bad.

• ErrBadName: Name is bad.

• ErrCancel: Operation canceled.

• ErrCommsFrame:: Serial framing error.

• ErrCommsLineFail:: Serial line failed.

• ErrCommsOverrun:: Serial overrun error.

• ErrCommsParity:: Serial parity error.

• ErrCorrupt: File or database corrupted.

• ErrCouldNotConnect:: Could not connect.

• ErrCouldNotDisconnect:: Could not disconnect.

• ErrDied: Thread or process died.

• ErrDirFull: Directory is full.

m Mobile Shell Reference Version 1.17 157

A. Appendix c© 2007 infowing AG

• ErrDisconnected:: Link is disconnected.

• ErrDiskFull: Disk is full.

• ErrDivideByZero: Integer division by zero.

• ErrEof: Eof reached.

• ErrGeneral: General problem.

• ErrHardwareNotAvailable: Hardware is not available or not en-
abled.

• ErrInUse: File or device is in use.

• ErrLocked: Object locked.

• ErrNoMemory: Out of memory. This exception cannot be catched.

• ErrNotFound: File or item not found.

• ErrNotReady: Device is not ready.

• ErrNotSupported: Operation not supported.

• ErrOverflow: Numeric overflow.

• ErrPathNotFound: Path not found.

• ErrTimedOut:: Operation timed out.

• ErrTooBig:: Value or array too big.

• ErrTotalLossOfPrecision: Total loss of precision.

• ErrUnderflow: Numeric underflow.

• ErrWrite: Write failed.

• ExcNotPermitted: Operation not permitted by user.

Programming Exceptions

Programming exceptions are thrown by m, and usually caused by an error in
your code or an unexpected user input.

• ExcArrayNotNumber: Operand is an array, not a number.

• ExcBooleanNotNumber: Operand is a boolean, not a number.

• ExcForwardFunction: Function is only forward defined.

158 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG A.1. Exception Tags

• ExcFunctionNotNumber: Operand is a function, not a number.

• ExcIndexOutOfRange: Array index is out of range.

• ExcInterrupted: Interrupted function call.

• ExcInvalidIndexType: Array index is neither number nor string.

• ExcInvalidNumber: Wrong number format.

• ExcInvalidUTF8: Invalid UTF-8 character read.

• ExcNativeNotNumber: Operand is native object, not a number.

• ExcNoSuchKey: No array element for key.

• ExcNotArray: Operand is not an array.

• ExcNotAvailable: Function or variable is unavailable.

• ExcNotBoolean: Operand is not a boolean.

• ExcNotComparable: Can only order two numbers or two strings.

• ExcNotFunction: Operand is not a function reference.

• ExcNotNative: Operand is not a native object.

• ExcNotNumber: Operand is not a number.

• ExcNotString: Operand is not a string.

• ExcNullNotNumber: Operand is null, not a number.

• ExcStringNotNumber: Operand is a string, not a number.

• ExcStringPosOutOfRange: String position is out of range.

• ExcTooManyGlobals: Too many global variables, split into modules.

• ExcUnknownModule: Unknown module referenced by native func-
tion.

• ExcValueOutOfRange: Value or parameter is outside valid range.

• ExcWrongNative: Operand has wrong native object type.

• ExcWrongParamCount: Too many or too few function parameters.

m Mobile Shell Reference Version 1.17 159

A. Appendix c© 2007 infowing AG

Internal Error Exceptions

Internal error exceptions are thrown by m when it detects an internal incon-
sistency. These exceptions cannot be catched, and are most likely caused by
a bug in m or in a native module.

• ErrDisabledFunction: Internal error: interpreting disabled func-
tion.

• ErrDuplicateModule: Internal error: duplicate module.

• ErrDuplicateNative: Internal error: duplicate native function.

• ErrEndOfCode: Internal error: falling through end of code.

• ErrInvalidDll: Internal error: DLL did not return module.

• ErrInvalidFrame: Internal error: invalid stack frame contents.

• ErrInvalidInstruction: Internal error: invalid instruction.

• ErrInvalidStack: Internal error: invalid stack.

• ErrInvalidVariableIndex: Internal error: invalid variable index.

• ErrMissingDll: Internal error: module DLL is missing.

• ErrNativeFunction: Internal error: interpreting native function.

• ErrNoCode: Internal error: interpreting without code.

• ErrNoNativeFunction: Internal error: no native function to add op-
tion to.

• ErrRTVersionMismatch: Internal error: runtime version mismatch.
Get an up to date version of the runtime or native module.

• ErrStringExtension: Internal error: string extension.

160 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG A.2. Reserved words

A.2 Reserved words

In the m language, keywords, like identifiers, are case sensitive. The follow-
ing keywords are reserved and cannot be used as identifiers:
and do function shl until
as else if shr use
break elsif in then while
by end not throw
case false null to
catch for or true
const forward return try

A.3 Properties (.prp) File

Global behaviour of the m application is configured in the m properties. Se-
lecting View→Properties opens a dialog to edit the properties.
The properties are stored in an ASCII text file
\system\apps\mShell\mShell.prp containing key-value pairs. Each
pair is on a single line, the key and the value separated by an equal (=)
character.
The following keys are recognized by m:

• autogo=script1,script2,...

A comma separated list of scripts to run when starting m. In conjunc-
tion with onboot, these scripts are run when the phone is switched on.
The script names must not contain any blanks.

• bgcolor=black|white|red|green|blue|yellow|cyan|

magenta|#rrggbb

The background color of console and editor. #rrggbb is a HTML-like
hexadecimal notation, e.g. #ff00ff for magenta.

• encodings=bom|utf-8|utf-16le|utf-16be|8-bit

The encoding to use for m source files and files loaded into and saved
from the m editor. This setting does not change the behaviour of the
I/O streams of module io (p. 111).
If set to bom, files read are expected to carry an initial Byte Order Mark

m Mobile Shell Reference Version 1.17 161

A. Appendix c© 2007 infowing AG

(BOM, character 0xfeff) determining their encoding; files without
BOM are treated as sequences of 8-bit characters. In this mode, files
are saved in UTF-8 with initial BOM.
If set to utf-8, files are read and saved in UTF-8. No BOM is expected
or written.
If set to utf-16le, files are read and saved in UTF-16 Little Endian.
No BOM is expected or written.
If set to utf-16be, files are read and saved in UTF-16 Big Endian. No
BOM is expected or written.
If set to 8-bit1, files are read and saved considering only the lower
eight bits of all characters. No BOM is expected or written.

• fgcolor=black|white|red|green|blue|yellow|cyan|

magenta|#rrggbb

The foreground (text) color of console and editor.

• keep=true|yes|y|1 | false|no|n|0 | busy

If set to true, yes, y or 1, the m application cannot be exited automat-
ically by the system, e.g. if it is running low on memory, or if m is to
be removed because it is updated by a new installation.
If set to busy, exiting is prevented if there are processes running or
waiting for input.
For all other values, m behaves like any other “well behaving” appli-
cation, i.e. it can be exited at any time if the operating system requests
it.

• mfont=typeface,points,bold,italic

The font to use in the m console and editor. points (integer), bold
(boolean) and italic (boolean) are optional. See also ui.mfont

(p. 144).

• onboot=true|yes|y|1 | false|no|n|0 | once | restart

If set to true, yes, y or 1, the m application will be started automati-
cally when the phone is booted up, i.e. switched on.
If set to once, m is only started at the next bootup, as the entry is au-
tomatically set to n afterwards. This is the recommended setting for
disaster prevention during script testing.
If set to restart, m is started automatically when the phone is booted

1This was the mode used prior to version 1.17.

162 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG A.3. Properties (.prp) File

up, and restarted each time about 20 seconds after it exits (orderly or
because of a crash).
This feature requires the m Supervisor & Viewer application to be in-
stalled.

• outsize=charcount

The maximum number of characters in the console output, before trun-
cating at the beginning. Truncation happens in chunks of about 500
characters. Set to 0 for an unlimited output size. Handling large output
output sizes slows m down.

• perms=permissions

The permission bits, defining the permissions granted to m scripts. See
section A.4 (p. 165).

• smsctrl=true|yes|y|1 | false|no|n|0

If set to true, yes, y or 1, the m application can be controlled via SMS
commands, even if it is not running. See chapter 5 (p. 155).
This feature requires the m Supervisor & Viewer application to be in-
stalled.

• smskey=keyword

Any SMS containing keyword as the first characters (ignoring case) is
considered a command and sent to the m application.

• smsnr=suffix

The last digits of the sender phone number which can control the m
application via SMS. If empty, anybody knowing smskey can control
m.

All other keys are silently ignored. This can be used to disable entries by just
putting e.g. a hash mark in front of them.
A sample properties file might look as follows:

m Mobile Shell Reference Version 1.17 163

A. Appendix c© 2007 infowing AG

autogo=TrackMe,PhoneMonitor
keep=busy
mfont=Monospace,14,false,false
onboot=once
fgcolor=#008000
bgcolor=white
outsize=10000
encoding=utf-8
perms=159
smsctrl=yes
smsnr=4561234
smskey=mshell

164 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG A.4. User Permissions

A.4 User Permissions

Permission for certain operations can be granted and denied by the user. Any
operation with insufficient permissions will throw ExcNotPermitted. Se-
lecting View→Permissions opens a dialog to edit the permissions.
The individual permissions are:

Name Bit Meaning
ReadDoc 1 Read access to files in system.docdir and its sub-

directories.
WriteDoc 2 Write access to files in system.docdir and its sub-

directories.
ReadApp 4 Read access to other application’s data.
WriteApp 8 Write access to other application’s data.
FreeComm 16 Access to free communication resources (receiving

messages, Bluetooth).
ReadAll 32 Read access to all files.
WriteAll 64 Write access to all files. Granting write access to

all files also allows modifying the permissions.
CostComm 128 Access to chargeable communication resources

(sending messages, TCP/IP).

Thus, if a function requires Read(file) , then

• If file denotes a file or directory in system.docdir or one of its sub-
directories, the ReadDoc permission must be granted for the function
to succeed.

• If file denotes a file or directory outside system.docdir or one
of its subdirectories, the ReadAll permission must be granted for the
function to succeed.

Likewise, if a function requires Write(file) , the WriteDoc or WriteAll
permissions must be granted.

m Mobile Shell Reference Version 1.17 165

A. Appendix c© 2007 infowing AG

166 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG Index

Index
.., 36

.prp file, 161

;, 18

8-bit, 162

abs function (in math), 121

acos function (in math), 121

add function (in contacts), 72

adr, contact field, 71

alaw constant (in audio), 66

all constant (in files), 79

appdir constant (in system), 131

append function (builtin), 43

append function (in io), 113

arch constant (in files), 79

Array, 6

array

associate, 12

indexing, 11

key, 12

literal, 11

array module, 55

arrays, 11

asin function (in math), 122

assignment, 19

atan function (in math), 122

attr function (in files), 79

attribute bits, 79

au constant (in audio), 66

AU format, 63, 66

audio file, 63

audio module, 63

auto flushing, 115

autoexec.m, 149–151

avail function (in io), 113

background color, 89, 90

beep function (in audio), 63

bg function (in graph), 90

birth, contact field, 71

black constant (in graph), 88

blue constant (in graph), 88

Bluetooth, 85

BMP, 98

bom, 161

Boolean, 6

boolean

literal, 9

break, 27

brush color, 89, 90

brush function (in graph), 90

Builtin Functions and Constants, 43

busy function (in audio), 64

busy function (in ui), 135

buttons, pointer event field, 136

case, 25

cd function (builtin), 43

ceil function (in math), 122

m Mobile Shell Reference Version 1.17 167

Index c© 2007 infowing AG

cell, contact field, 71

CES, 112

ces function (in io), 114

char function (builtin), 44

character encoding scheme, 112

cid function (in gsm), 109

circle function (in graph), 91

clear function (in graph), 92

clone, 30

close function (in audio), 64

close function (in io), 114

cls function (builtin), 44

cmd function (in ui), 135

code function (builtin), 45

collate constant (in array), 63

collate function (builtin), 45

comments, 6

company, contact field, 71

concat function (in array), 55

concatenation, 16

confirm function (in ui), 137

console input, 113

console mode, 87, 95

const, 20

constant, 20

contact

database, 70

fields, 71

contacts, 70

contacts module, 70

copy function (in array), 56

copy function (in files), 80

cos function (in math), 122

CostComm, 165

country, contact field, 71

cp function (autoexec.m), 151

create function (in array), 56

create function (in io), 114

current directory, 42

cut function (in audio), 65

cyan constant (in graph), 88

data types, 5

date function (builtin), 45

dayofweek function (in time), 131

del function (autoexec.m), 151

delete function (builtin), 46

delete function (in contacts), 73

delete function (in files), 80

delete function (in sms), 126

dev constant (in system), 131

dialogs, 135

dir constant (in files), 79

dir function (autoexec.m), 152

do, 23

docdir constant (in system), 131

double dot, 35, 36

down constant (in graph), 108

downkey constant (in ui), 148

dtmf function (in audio), 65

e constant (in math), 125

e-mail, 85

edit function (autoexec.m), 152

edit function (in files), 81

168 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG Index

ellipse function (in graph), 92

email, contact field, 71

equal function (builtin), 46

ErrAbort, 157

ErrAccessDenied, 65, 66, 114, 115, 157

ErrAlreadyExists, 157

ErrArgument, 65, 68, 74–76, 120–124,
133, 157

ErrBadHandle, 157

ErrBadName, 72, 76, 157

ErrCancel, 157

ErrCommsFrame:, 157

ErrCommsLineFail:, 157

ErrCommsOverrun:, 157

ErrCommsParity:, 157

ErrCorrupt, 118, 157

ErrCouldNotConnect:, 157

ErrCouldNotDisconnect:, 157

ErrDied, 157

ErrDirFull, 157

ErrDisabledFunction, 160

ErrDisconnected:, 158

ErrDiskFull, 158

ErrDivideByZero, 158

ErrDuplicateModule, 160

ErrDuplicateNative, 160

ErrEndOfCode, 160

ErrEof, 118, 158

ErrGeneral, 158

ErrHardwareNotAvailable, 158

ErrInUse, 63–66, 68, 69, 158

ErrInvalidDll, 160

ErrInvalidFrame, 160

ErrInvalidInstruction, 160

ErrInvalidStack, 160

ErrInvalidVariableIndex, 160

ErrLocked, 158

ErrMissingDll, 160

ErrNativeFunction, 160

ErrNoCode, 160

ErrNoMemory, 158

ErrNoNativeFunction, 160

ErrNotAvailable, 37, 38

ErrNotFound, 73, 75, 77, 115, 126, 127,
158

ErrNotReady, 65, 68, 158

ErrNotSupported, 65, 69, 104, 108, 129,
158

error function (in ui), 137

ErrOverflow, 123, 158

ErrPathNotFound, 113–115, 158

ErrRTVersionMismatch, 160

ErrStringExtension, 160

ErrTimedOut, 119

ErrTimedOut:, 158

ErrTooBig:, 158

ErrTotalLossOfPrecision, 158

ErrUnderflow, 158

ErrWrite, 158

ExcArrayNotNumber, 158

ExcBooleanNotNumber, 158

ExcDivideByZero, 14

exceptions, 38

catching, 39

environment, 157

internal, 160

m Mobile Shell Reference Version 1.17 169

Index c© 2007 infowing AG

programming, 158

tags, 157

throwing, 39

ExcForwardFunction, 158

ExcFunctionNotNumber, 159

ExcIndexOutOfRange, 11, 39, 56–59, 61,
159

ExcInterrupted, 143, 159

ExcInvalidIndexType, 159

ExcInvalidNumber, 147, 159

ExcInvalidParam, 72

ExcInvalidUTF8, 112, 159

ExcNativeNotNumber, 159

ExcNoSuchKey, 61, 159

ExcNotArray, 159

ExcNotAvailable, 159

ExcNotBoolean, 22, 23, 159

ExcNotComparable, 17, 59, 62, 159

ExcNotFunction, 159

ExcNotNative, 159

ExcNotNumber, 159

ExcNotPermitted, 158, 165

ExcNotString, 159

ExcNullNotNumber, 159

ExcStringNotNumber, 159

ExcStringPosOutOfRange, 46, 47, 51,
54, 159

ExcTooManyGlobals, 159

ExcUnknownModule, 159

ExcValueOutOfRange, 64, 74, 159

ExcWrongNative, 159

ExcWrongParamCount, 159

exists function (in files), 81

exit function (autoexec.m), 152

exp function (in math), 122

expressions, 13

extadr, contact field, 71

extname, contact field, 71

fax, contact field, 71

file

attribute, 79, 84

name, 41

files module, 78

fill function (in array), 57

find function (in contacts), 73

findnr function (in contacts), 74

floor function (in math), 123

flush function (in io), 115

fname, contact field, 71

fold constant (in array), 63

font, 93

font function (in graph), 93

fonts function (in ui), 138

for, 23

form function (in ui), 138

forward, 32

FreeComm, 165

full function (in graph), 94

full screen mode, 87, 94, 96

function

forward, 32

literal, 9

parameter, 11, 30

recursive, 11, 30

reference, 6, 29, 33, 48

170 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG Index

result, 30

function reference, 33

functions, 29

garbage collection, 129, 130

gc function (in system), 129

get function (in contacts), 75

get function (in graph), 97

get function (in sms), 126

get function (in time), 132

GIF, 98

GIF format, 104

Global variables, 11

gokey constant (in ui), 148

graph module, 87

graphics, 87

colors, 88

coordinates, 87

green constant (in graph), 88

gsm module, 108

hal function (in system), 129

hexadecimal, 8

hexnum function (builtin), 47

hexstr function (builtin), 47

hidden constant (in files), 79

hide function (in graph), 98

icon function (in graph), 98

idletime function (in ui), 140

if, 21

ima constant (in audio), 66

imei constant (in gsm), 111

imsi constant (in gsm), 111

inactivity timer, 140

inbox function (in sms), 127

increment, 20

index function (builtin), 47

index function (in array), 57

insert function (in array), 58

io module, 111

isarray function (builtin), 48

isboolean function (builtin), 48

isfunction function (builtin), 48

isnative function (builtin), 49

isnum function (builtin), 49

isort function (in array), 58

isstr function (builtin), 49

JPEG, 98

JPEG format, 104

keyboard, 136, 141

keys function (builtin), 50

keys function (in ui), 141

keystroke, 136, 141

keywords, 161

labels function (in contacts), 75

lac, GSM network field, 109

large function (in ui), 142

leftkey constant (in ui), 148

leindex function (in array), 59

len function (builtin), 50

len function (in audio), 65

line function (in graph), 99

list function (in ui), 142

literals, 7

m Mobile Shell Reference Version 1.17 171

Index c© 2007 infowing AG

loc, contact field, 71

Local variables, 11

log function (in math), 123

long, GSM network field, 109

lower function (builtin), 50

magenta constant (in graph), 88

math module, 121

mcc, GSM network field, 109

md function (autoexec.m), 152

mem function (in system), 130

menu command, 136

menu function (in ui), 143

menus, 135

mfont function (in ui), 144

mkdir function (in files), 82

MMS, 85

mnc, GSM network field, 109

module

alias, 35

initialization, 35

optional, 37

prefix, 36

version, 37, 38

modules, 34

move function (in files), 82

MP3, 63

msg function (in ui), 145

mulaw constant (in audio), 66

mv function (autoexec.m), 153

name, contact field, 71

native object, 49

native objects, 6

net function (in gsm), 109

new function (in array), 60

new function (in contacts), 76

new function (in gsm), 110

note, contact field, 71

null, 6

literal, 10

num function (builtin), 51

num function (in time), 133

Number, 6

number

formatting, 47, 53

hexadecimal, 8

literal, 7

number constant (in gsm), 111

numbers

precision, 6

range, 6

open function (in audio), 66

open function (in io), 115

operands, 13

operator

arithmetic, 14

bitwise, 15

boolean, 17

comparison, 16

concatenation, 16

precedence, 14

optional parameters, 31

os constant (in system), 131

own contact, 77

172 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG Index

own function (in contacts), 77

pager, contact field, 71

parameter

optional, 31

parameters, 30

path

name, 41

pcm16 constant (in audio), 66

pcm8 constant (in audio), 66

pen, 146

pen color, 89, 100

pen function (in graph), 100

permissions, 165

pfonts function (in ui), 146

phone, contact field, 71

pi constant (in math), 125

pict, contact field, 71

play function (in audio), 67

PNG, 98

PNG format, 104

po, contact field, 71

pointer, 136

pointing device, 136, 146

poly function (in graph), 101

pos function (in audio), 68

pow function (in math), 123

precedence, 14

print, 27

print function (in io), 116

println function (in io), 116

properties file, 161

ptr function (in ui), 146

put function (in graph), 101

query function (in ui), 147

random function (in math), 123

raw constant (in array), 63

raw constant (in io), 112

rd function (autoexec.m), 153

read function (in io), 116

ReadAll, 165

ReadApp, 165

ReadDoc, 165

readln function (in io), 117

readm function (in io), 117

receive function (in sms), 127

record function (in audio), 69

recording, 63

rect function (in graph), 103

recursive function, 11

red constant (in graph), 88

region, contact field, 71

remove function (in array), 61

ren function (autoexec.m), 153

rename function (in files), 83

replace function (builtin), 51

reserved words, 161

return, 27, 30

RGB, 88

rightkey constant (in ui), 148

rindex function (builtin), 51

rindex function (in array), 61

ring, contact field, 71

rmdir function (in files), 83

m Mobile Shell Reference Version 1.17 173

Index c© 2007 infowing AG

ro constant (in files), 79

roots function (in files), 84

round function (in math), 124

run function (autoexec.m), 153

rw constant (in audio), 66

save function (in graph), 104

scale function (in graph), 104

scan function (in files), 84

seek function (in io), 118

semicolon, 18

Send as, 85

send as, 78

send function (autoexec.m), 153

send function (in files), 85

send function (in sms), 128

sender, SMS field, 126

set function (in contacts), 77

set function (in sms), 128

set function (in time), 132

shell, 149

short, GSM network field, 109

show function (in graph), 105

signal function (in gsm), 110

sin function (in math), 124

size function (in files), 86

size function (in graph), 106

size function (in io), 118

sleep function (builtin), 52

SMS control, 155

sms module, 125

sort function (in array), 62

split function (builtin), 52

sqrt function (in math), 124

statement list, 18

statements, 18

stdin constant (in io), 112

stdout constant (in io), 112

stop function (in audio), 69

str function (builtin), 53

str function (in time), 133

stream object, 112

String, 6

string

literal, 8

substr function (builtin), 54

syntax

EBNF, 5

interactive, 149

sys constant (in files), 79

system module, 129

tan function (in math), 124

text function (in graph), 107

text, contact field, 71

text, SMS field, 126

time function (in files), 86

time module, 131

time, SMS field, 126

timeout function (in io), 118

title, contact field, 71

trim function (builtin), 54

trunc function (in math), 125

try

module, 37

prefix, 37

174 m Mobile Shell Reference Version 1.17

c© 2007 infowing AG Index

type function (autoexec.m), 154

ui module, 135

unread, SMS field, 126

until, 23

up constant (in graph), 108

upkey constant (in ui), 148

upper function (builtin), 54

url, contact field, 71

use, 35, 40, 41

user activity, 140

utc function (in time), 134

utf-16be, 162

utf-16le, 162

utf-8, 162

utf16be constant (in io), 113

utf16le constant (in io), 112

utf8 constant (in io), 112

variable, 10

global, 11

local, 11

verbosegc function (in system), 130

version constant (builtin), 55

video, contact field, 71

volume function (in audio), 70

wait function (in audio), 70

wait function (in io), 119

wav constant (in audio), 66

WAV format, 63, 66

weekofyear function (in time), 134

while, 22

white constant (in graph), 88

write function (in io), 120

WriteAll, 165

WriteApp, 165

WriteDoc, 165

writeln function (in io), 120

writem function (in io), 120

x, pointer event field, 136

y, pointer event field, 136

yellow constant (in graph), 88

zip, contact field, 71

m Mobile Shell Reference Version 1.17 175

	Introduction
	Language
	Data Types
	Comments
	Literals
	Variables
	Arrays
	Expressions
	Statements
	Assignment
	Increment
	If Statement
	While Statement
	Do-Until Statement
	For Statement
	Case Statement
	Break Statement
	Return Statement
	print Statement

	Functions
	Modules
	Exceptions
	Source Structure

	Library
	Path and File Names
	Builtin Functions and Constants
	Module array: Array Functions
	Module audio: Audio Functions
	Module contacts: Contacts Database
	Module files: File and Directory Access
	Module graph: Screen Graphics
	Module gsm: GSM information
	Module io: File and Stream Input/Output
	Module math: Mathematical Functions
	Module sms: Short Messages
	Module system: System Related Functions
	Module time: Time and Date Functions
	Module ui: User Interface Functions

	Interactive Shells
	Simplified Syntax for Interactive Use
	Shell Builtin Functions

	SMS Control
	Appendix
	Exception Tags
	Reserved words
	Properties (.prp) File
	User Permissions

	Index

