
Tutorial & User Guide
Version 1.17

m Mobile Shell, Tutorial & User Guide, Version 1.17
Written by Lukas Knecht

www.m-shell.net

Document IW-M-TUT-1.14

c© 2004-2007 infowing AG, 8703 Erlenbach, Switzerland

The information contained herein is the property of infowing AG and shall neither be reproduced
in whole or in part without prior written approval from infowing AG. All rights are reserved,
whether the whole or part of the material is concerned, specifically those of translation, reprint-
ing, reuse of illustration, broadcasting, reproduction by photocopying machine or similar means
and storage in data banks. infowing AG reserves the right to make changes, without notice, to the
contents contained herein and shall not be responsible for any damages (including consequential)
caused by reliance on the material as presented.

Typeset in Switzerland.

c© 2007 infowing AG Contents

Contents

1 Introduction 3
1.1 About m . 3
1.2 Tutorial Structure . 4

2 Quick Start Guide 7
2.1 Installing m . 7
2.2 A Sample Script . 7
2.3 A Sample Shell Session . 11

3 The m Application 13
3.1 The Script List . 13
3.2 The Console . 15
3.3 Script Files . 17
3.4 The Editor . 18
3.5 The Properties Dialog . 20
3.6 The Permissions Dialog . 21

4 m Programming 25
4.1 Basic Arrays . 25
4.2 Associative Arrays . 29
4.3 Accessing SMS . 30
4.4 Editing Data . 33
4.5 Making it a Function . 36
4.6 Combining SMS and User Interface 38
4.7 Reading and Writing Files 41

m Mobile Shell Tutorial & User Guide Version 1.17 1

Contents c© 2007 infowing AG

4.8 Making it a Module . 45
4.9 Conclusion . 49

5 m Help System 51
5.1 Invoking help . 51
5.2 Navigating through patterns 52

6 m Library Overview 55

7 Installation Guide 57
7.1 Installation . 57
7.2 Activation . 58

Index 61

2 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG

1. Introduction
This tutorial is a beginner’s guide to successfully writing m shell scripts.
After working it through, you will know how to operate the m application on
your phone and have encountered most of the m language, including its key
functions.

1.1 About m

A honest word first: when we say “writing an m script”, we mean “program-
ming”. We, the authors of m, believe that programming can be a lot of fun.
Programming m is particularly rewarding. You do it both for and on a device
that you often carry with you, maybe wherever you go: first, some clever m
scripts can make your smart phone a lot smarter; second, you can try new
ideas or perfect old ones virtually anytime and anywhere.
So:

• If you are already familiar with any programming language, learning
m will be easy and straightforward.

• If programming is totally new to you, but you are a curious person
interested in technology, m scripting can open the door to an exciting
and virtually unlimited new activity.

• If however you are totally convinced programming is nothing for you,
you should only read sections 2 (p. 7) and 3 (p. 13), which shows you
how to use m to run scripts written by your friends, or anybody else
from the m community.

Unless you already are a smartphone Guru, or close to becoming one, learn-
ing m will also give you a better understanding of the technologies used by
your smart phone, like the GSM network, Bluetooth, the agenda or contacts
databases, and much more.

m Mobile Shell Tutorial & User Guide Version 1.17 3

1. Introduction c© 2007 infowing AG

Then, a word of warning: smart phones are powerful small computers. Their
hardware is in many respects comparable to, and in some respects even su-
perior to, that of a Personal Computer. However, coming out of the factory,
smart phones are limited to the capabilities the manufacturer, and often the
network provider, have considered worth or safe to include. You can install
additional software, but this software will also usually be limited to the tasks
it was developed for. There are many good (and a few not so good) reasons
this limitation exists. Among the good ones are the following:

• You should not be allowed to manipulate the phone in a way that makes
it unusable or leads to loss of important data.

• Cellphone communications are expensive, and often special services
will be charged directly to your phone bill. Hence, running the wrong
software can become quickly quite expensive.

Unlike a lot of other smart phone software, m is very powerful in a general
sense. This means that with a malevolent script and you giving the corre-
sponding permissions, m can make the phone partially unusable, delete im-
portant information, or even charge your phone bill without you noticing it.
This is of course also true for a lot of other software, which you must trust
before starting to use it. m has a clear advantage here: you can always verify
scripts before using them, and you can explicitly deny access to data on your
phone or to its communication resources. For the scripts you get from people
or sources you do not know or cannot trust, this is highly recommended.

1.2 Tutorial Structure

This tutorial is organized into the following parts:

• A quick start guide to your first m steps.

• An introduction to the m application and its views.

• A step-by-step tutorial through many aspects of the m language. As an
example, you build up a more and more complete SMS service.

• An introduction to the m help system and coding wizard.

4 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG 1.2. Tutorial Structure

• An overview of the m library modules.

• Detailed information on how to install m.

This tutorial will not explain every aspect of m in full detail. While working
through it, and while continuing to work with m, you should refer to the
following manuals for further and in-depth information:

• m Shell Reference (document IW-M-REF) covers all aspects of the m
language, its base library, and some aspects of the m application.

• m Shell Library Part Two (document IW-M-LIB2) covers a lot of addi-
tional m functions.

And don’t forget: the m website at www.m-shell.net is always worth a visit!

m Mobile Shell Tutorial & User Guide Version 1.17 5

http://www.m-shell.net

1. Introduction c© 2007 infowing AG

6 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG

2. Quick Start Guide

2.1 Installing m

Before you can do your first steps with m, you must install it on your phone
and activate it:

1. Install m from the .sis file appropriate for your device, e.g.
mShell-S60.sis for a Series 60 phone. Or visit wap.248.ch using
your phone.

2. Start the mShell application. It will prompt you for a serial number to
be used during the SMS activation process. If you got a serial number,
enter it here. To activate the free edition, simply enter 42.

For detailed information about installing and activating m, see chapter 7
(p. 57).

2.2 A Sample Script

Once m has been activated, it will show you the list of installed scripts and
modules.

m Mobile Shell Tutorial & User Guide Version 1.17 7

http://wap.248.ch

2. Quick Start Guide c© 2007 infowing AG

Series 60 sample screen UIQ sample screen

A script is like an application you can run. As an example, let’s open the
Partytime script:

Series 60: Navigate to Partytime and press the confirm button.
UIQ: Select Partytime with the pen.

This will show the script’s empty console. To start the script:
Series 60: Press the confirm button again.
UIQ: Press the button.

8 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG 2.2. A Sample Script

Series 60 sample screen UIQ sample screen

The script runs and prints Waiting... on the console. Now have a friend
send you an SMS with the text “party”. After a few seconds she should auto-
matically receive a reply from you, sent from the Partytime script. In fact,
the script acts as a very simple automatic SMS service.
Stop the script by selecting Process→Stop. You have just successfully used
your first m script!
You can look at the script by selecting Process→Edit Source.

m Mobile Shell Tutorial & User Guide Version 1.17 9

2. Quick Start Guide c© 2007 infowing AG

Series 60 sample screen UIQ sample screen

If you want to change the reply message, or the text triggering the reply,
simply edit the script. File→Save & Go will start the script again, with your
changes. See section 3.4 (p. 18) for details.
For your convenience, the complete script is printed here, with comments
added:

/*
A very simple m SMS service:
anybody sending the keyword "party"
will get a standard reply.

*/
use sms // we need it
r="The party starts at 8pm!"; // our standard reply
while true do // loop forever
print "Waiting..."; // let the user know
n=sms.receive(); m=sms.get(n); // get the next msg
t=lower(trim(m["text"])); // isolate the word
if t="party" then // if it’s party,
sms.send(m["sender"], r); // send the reply
print "Replied to",m["sender"] // and log it

end
end

10 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG 2.3. A Sample Shell Session

2.3 A Sample Shell Session

Besides running stored scripts, you can also execute m interactively, for in-
stance as a powerful calculator, or to manipulate data on your phone you
cannot easily access otherwise.
To open an interactive shell, select mShell→New shell. The shell console
will prompt you for a command with m>.
After the prompt, enter the following calculation, then

Series 60: Press the confirm button.
UIQ: Press the button.

14 / (14 + 3)
→ 0.8235294118

Series 60 sample screen UIQ sample screen

m Mobile Shell Tutorial & User Guide Version 1.17 11

2. Quick Start Guide c© 2007 infowing AG

Or print a table of EUR versus USD:

rate=1.22;
for eur=10 to 50 by 5 do
print eur,’EUR’,rate*eur,’USD’

end
→ 10 EUR 12.2 USD

15 EUR 18.3 USD
20 EUR 24.4 USD
25 EUR 30.5 USD
...

Interactive shells can execute arbitrary m code, including variable assign-
ments, function declarations, module imports and so on. In addition, there
are some useful functions to manipulate files:
cd Display and change current directory.
cls Clear the console output.
cp Copy files.
del Delete files.
dir List directories.
md Create directories.
mv Move files.
rd Remove directories.
ren Rename a file.
send Send a file (“Send As”).
type Display text file contents.

For instance, the following command searches the C: drive for JPEG (.jpg)
files (/r indicates that all subdirectories should also be searched):

dir c:*.jpg/r
→ c:\Nokia\Images\Backgrounds\mShellLogo.jpg

...

See also chapter 4 (Reference, p. 149) for more information about interactive
shells.

12 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG

3. The m Application
All m scripts and interactive sessions are run from within the m application.
The number of scripts which can be run simultaneously is only limited by the
phone’s resources.

3.1 The Script List

The applications main view shows the list of scripts, modules and interactive
sessions.

Series 60 sample screen UIQ sample screen

m Mobile Shell Tutorial & User Guide Version 1.17 13

3. The m Application c© 2007 infowing AG

The script type is indicated by the icon on the left:

A script.
A script which is started when the m application is launched.
An interactive shell session.
A module for use by scripts, shells or other modules.

For a script or interactive session, the icon on the right indicates its state:

Inactive, without console.
Stopped, but with a console. Process→Close will make it inactive.
Running. Process→Stop will stop it.
Waiting for console input.
Was running, but produced an error. Open it to see the error message.

The script list offers the following menu options:
mShell→New shell Create a new interactive shell session.
mShell→New script Create a new m script.
mShell→New module Create a new m module.
mShell→Send As Send the selected script or module (e.g. via

Bluetooth or as an e-mail attachment).
mShell→Back Send the m application to the background.
mShell→Exit Exit the m application.
View→Properties Edit the application properties (see 3.5

(p. 20)).
View→Permissions Edit the permissions granted to m scripts (see

3.6 (p. 21)).
View→About Display a message with details about the m

application, including the serial number.
View→Run Activation Re-run the activation process, for instance to

change the serial number.
View→Toggle Size (Series 60 only): toggle the view size, showing

or hiding the title pane.

14 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG 3.2. The Console

3.2 The Console

Every active script and shell session has a console associated with it. It is
displayed if a script or session is selected from the script list.
The console is a simple text viewer displaying the output of the print state-
ment (and the io.stdout (Reference, p. 112) stream). In interactive shells,
it also serves to input the m statements to be executed.

Series 60 sample screen UIQ sample screen

To start or continue execution,
Series 60: Press the confirm button.
UIQ: Press the button.

Console text is frozen up to the point of last output. In interactive shells, this
is typically all text up to the last m> prompt.
The console has a command history. A certain number of previous inputs can
be recalled:

Series 60: Press the down key.
UIQ: Press the button.

The console will cycle through the previous inputs.

m Mobile Shell Tutorial & User Guide Version 1.17 15

3. The m Application c© 2007 infowing AG

The console offers the following menu options:
Process→Go Run the script or command.
Process→Stop Stop a currently executing script or command.
Process→Close Close this script’s console, or close the shell

session.
Process→Edit Source Edit the source associated with the script, or

recall the previous input.
Process→Save Output Save the console text to a file.
Process→Clear Output Clear the console, i.e. remove all text.
Process→View Size (Series 60 only): toggle the view size, showing

or hiding the title pane.
Edit→Back (Series 60 only) return to the script list.
Edit→Help Show the help for the text before the cursor

(see chapter 5 (p. 51)).
Edit→Copy Copy the selected text to the clipboard.
Edit→Cut Cut the selected text to the clipboard.
Edit→Paste Paste text from the clipboard.
Edit→Find (UIQ only) open a find text dialog.
Edit→Replace (UIQ only) open a replace text dialog.

16 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG 3.3. Script Files

3.3 Script Files

m scripts and modules are just files stored on the file system of your phone.
Since they are files, you can manipulate them using a file explorer application
or using m, and transfer them to other devices.
These files are located in the document directory of the m applica-
tion. Scripts have the file extension .m, and modules the extension
.mm. For instance, the Partytime script might correspond to file
c:\documents\mShell\Partytime.m. You can easily verify this from
within a shell: open a shell (e.g. with mShell→New Shell) and try the fol-
lowing (you don’t have to enter the comments starting with //):

// get the document directory from module system
m>use system system.docdir
→ c:\documents\mShell\
// show the file contents
type(system.docdir+"Partytime.m")
→ /*

A very simple m SMS
service: anybody sending
the keyword "party" will
get a standard reply.

*/
use sms
r="The party starts at 8pm!";
...

m Mobile Shell Tutorial & User Guide Version 1.17 17

3. The m Application c© 2007 infowing AG

3.4 The Editor

To write or edit an m script or module, you can use the editor:
To edit an existing script, open it from the script list, then

Series 60: Choose Process→Edit Source.
UIQ: Press the button.

To edit an existing module, simply open it from the script list.
Only one file can be edited at a time: when loading a file, a previously edited
file will be saved.
As an example, open the Partytime script and load it into the editor, as
explained above.

Series 60 sample screen UIQ sample screen

Now replace the text “The party starts at 8pm!” by “Sorry, no party tonight!”.
You can start the modified script directly from the editor by

Series 60: choosing File→Save & Go
UIQ: pressing the button.

Note that on Series 60, the confirm button inserts a new line when in the
editor.

18 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG 3.4. The Editor

The editor offers the following menu options:
File→Save & Go Save the file and run the script.
File→Save Save the file (optionally changing the name),

but stay in the editor.
File→Save & Close Save the file, and return to the script list.
File→Save & Send As Save the file, then send it (e.g. via Bluetooth

or as an e-mail attachment).
File→Discard & Close Discard any changes, and return to the script

list.
File→Auto Go Toggle the “auto go” state of the script being

edited. If “auto go” is enabled (indicated by
a icon), the script is started automatically
whenever the m application starts.

File→Delete Discard any changes, and delete the file.
File→Rename Rename the file.
File→View Size (Series 60 only): toggle the view size, showing

or hiding the title pane.
The Edit menu is the same as in the console.

m Mobile Shell Tutorial & User Guide Version 1.17 19

3. The m Application c© 2007 infowing AG

3.5 The Properties Dialog

The properties dialog is accessed via View→Properties. The application
properties determine visual properties of m, and its behaviour with respect
to the system.

Series 60 sample screen UIQ sample screen

20 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG 3.6. The Permissions Dialog

The individual properties are:
mfont The m console font.
fgcolor The foreground (text) color of console and editor.
bgcolor The background color of console and editor.
outsize Size of console buffer in characters.
encoding The encoding for source files: typical choices are bom and

utf-8; other options are utf-16le, utf-16be and 8-bit.
See section A.3 (Reference, p. 161) for details.

keep Select whether system exit requests are ignored; if set to
busy, requests are ignored if any script is running.

onboot Select whether the m application starts automatically when
the phone is turned on (requires m Supervisor & Viewer). For
testing, set to once to only autostart once. To automatically
restart m whenever it exits or crashes, select restart.

smsctrl Select whether the m application can be controlled via SMS
commands (requires m Supervisor & Viewer). See chapter 5
(Reference, p. 155) for available commands.

smskey The keyword prefix for all SMS commands. SMS not starting
with this keyword are ignored and end up in the normal inbox.

smsnr The last digits of the sender phone number which can control
the m application via SMS. For instance, with smsnr=1234,
the SMS from all phones with a number ending in 1234 can
control m. If empty, anybody knowing smskey can control
m.

See also appendix A.3 (Reference, p. 161) for details about properties.

3.6 The Permissions Dialog

The permissions dialog is accessed via View→Permissions. These permis-
sions grant or deny access to data or resources on the phone.
There are three data areas which can be protected individually from reading
and/or writing:

1. Doc: the directory where m scripts and modules reside, and all its sub-
directories and files. Granting access to the Doc area is normally safe,
as it cannot harm the phone, only the m scripts.

m Mobile Shell Tutorial & User Guide Version 1.17 21

3. The m Application c© 2007 infowing AG

2. App: the data modifiable through well defined interfaces, like contacts,
the agenda, messages and such. Granting read access to the App area is
normally safe, as it cannot harm the phone. When write access to the
App area is granted, a malevolent m script can destroy valuable data.

3. All: any directory or file on the phone. Granting read access to the All
area is normally safe, as it cannot harm the phone. However, granting
write access to the All area is generally not recommended, as a malev-
olent script can render the phone unusable. It also allows a script to
indirectly grant any other permission, e.g. CostComm.

In addition, two communication areas can also be protected:

1. FreeComm: any communication which is free, i.e. where charges can-
not occur. This includes reading messages and Bluetooth.

2. CostComm: any communication which may be subject to charges. This
includes sending messages and networking via TCP/IP.

Series 60 sample screen UIQ sample screen

22 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG 3.6. The Permissions Dialog

The individual permissions are:
ReadDoc Grant read access to the Doc area.
WriteDoc Grant write access to the Doc area.
ReadApp Grant read access to the App area.
WriteApp Grant write access to the App area.
FreeComm Grant access to free communication resources.
ReadAll Grant read access to the All area.
WriteAll Grant write access to the All area.
CostComm Grant access to chargeable communication resources.

See also appendix A.4 (Reference, p. 165) for details about permissions.

m Mobile Shell Tutorial & User Guide Version 1.17 23

3. The m Application c© 2007 infowing AG

24 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG

4. m Programming
After having explored the m application, you are ready to start writing m
scripts. This chapter will introduce you to the m language and some of its
functions. At the end, you will have seen how a keyword driven SMS service
can be implemented, including a persistent database for its content, and a user
interface to edit it.
In particular, you will see how to:

• build a small database of keywords and responses using m arrays,

• monitor incoming SMS traffic,

• send SMS responses on incoming messages matching a keyword from
the database,

• implement a user interface to edit the database,

• combine SMS monitoring and user interface with a menu,

• save and load the database from and to a file,

• move the database part to its own module, so it is reusable from other
scripts.

The resulting m components, the script SmsService and the module MyDB,
are part of the standard installation.

4.1 Basic Arrays

Our SMS service should examine each incoming SMS and check whether it
matches a list of keywords we defined. If a match is found, the corresponding
reply should be sent back. Let’s assume we initially start with the following
keywords and replies:

m Mobile Shell Tutorial & User Guide Version 1.17 25

4. m Programming c© 2007 infowing AG

Keyword Reply
party The party starts at 8pm!

place I am at home.

mood Just don’t ask.

For instance, if someone sends you an SMS with the text “mood”, your phone
should automatically reply “Just don’t ask.”.
In m, we could represent this table as two arrays:

keywords=["party", "place", "mood"];
replies=["The party starts at 8pm!",

"I am at home.",
"Just don’t ask."]

An array is a collection of values (numbers, strings, other arrays...). The
above two statements create two arrays and assign them to the variables
keywords and replies.
A few observations may help clarifying:

• A variable is just a name we can assign a value to. In m, names are
case sensitive, so keywords and KeyWords are two different names.
Blanks or interpunction cannot be used in names, and they must not
start with digits.

• The = operator assigns a value to a variable.

• Two assignments (and two statements in general) must be separated by
a semicolon (;).

• An array is defined by a comma separated list of values between brack-
ets ([]).

• A string must be quoted. Both single quotes (’) or double quotes (‘‘)
can be used.

Single elements of each array can be accessed by indexing :

26 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG 4.1. Basic Arrays

print keywords[0]
→ party
print replies[2]
→ Just don’t ask
print replies[3]
→ ExcIndexOutOfRange thrown
print len(replies) // The number of elements in replies
→ 3

And again a few remarks:

• Indexing happens by appending the element index between brackets
after the array variable.

• The index of the first element is zero1.

• Using an index number for which no element exists is an error: it
throws ExcIndexOutOfRange. See section 2.10 (Reference, p. 38)
for more information about exceptions.

• The number of elements (length) of an array can be obtained by calling
the len function on the array.

• Functions are called by their name (e.g. len), followed by the argu-
ments between parentheses ().

• The rest of the line after two slashes (//) is considered a comment and
ignored by m.

Now that we have keywords and replies defined, how are we going to
use them? Remember we want to find the reply for an incoming message.
This means we have to search through all keywords. If we find a match, the
corresponding reply can be used. In m, we could write something like this:

1Consequently, the index of the last element is the number of elements minus one. This may
appear strange, but follows most modern programming languages. Starting indexing at zero has
proven much easier to deal with in practice than starting at one.

m Mobile Shell Tutorial & User Guide Version 1.17 27

4. m Programming c© 2007 infowing AG

msg=...; // the incoming message
i=0; // start at the first element
while i<len(keywords) and keywords[i]#msg do
i++

end;
if i<len(keywords) then
reply=replies[i];
// send the reply

end

The above code fragment introduces two very important m control structures,
while and if:

• i=0 assigns zero to the variable i.

• The expression between while and do is evaluated. If it is true, the
statements between do and end are executed.

• i<len(keywords) checks whether i has not yet reached the end of
the array.

• keywords[i]#msg checks whether keywords[i] is not equal to
msg.

• If both conditions are true, we move to the next element: i++ simply
adds one to i. We could also have written i=i+1 instead.

• The while loop ends if either the end of the array has been reached, or
keywords[i] equals msg.

• The expression between if and then is evaluated. If it is true, the
statments between then and end are executed:

• If i<len(keywords), keywords[i] must equal msg, and we reply
with the corresponding text replies[i].

As an example, consider msg="place". With i=0, the while condition is
true, so i++ is executed, setting i=1. Since keywords[i] now equals msg,
the while condition is no longer true. And since i<len(keywords), the
reply replies[i] will be sent.

28 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG 4.2. Associative Arrays

4.2 Associative Arrays

In the previous section, we solved the problem of looking up data which
matches a given key in a table. Since this problem occurs very frequently
in programming, m offers a standard solution for it: associative arrays, or ar-
rays whose elements can be accessed directly with (string) keys. If we define
our tiny database of keywords and replies in a single array as follows:

db=["party": "The party starts at 8pm!",
"place": "I am at home.",
"mood": "Just don’t ask."];

we can access the elements directly by their keys:

print db["place"]
→ I am at home.
print db["mood"]
→ Just don’t ask.
print db["hello"]
→ null

A few remarks:

• An associative array is constructed by prefixing each array element
with a key and a colon (:). The key must be a string.

• A key in brackets ([]) directly indexes into the table and accesses the
corresponding element.

• Using an index string for which no element exists is not an error, but
returns the special value null. This is in contrast to indexing with
numbers, where the corresponding element must exist.

An associative array is still a normal array and can also be indexed by num-
bers:

print len(db)
→ 3
print db[1]
→ I am at home

Arrays elements can also be modified via their keys, and new elements can

m Mobile Shell Tutorial & User Guide Version 1.17 29

4. m Programming c© 2007 infowing AG

be added by indexing with a new key:

db["place"]="I am at work.";
db["hello"]="How do you do?";
print len(db)
→ 4
print db
→ ["The party starts at 8pm!","I am at work.",

"Just don’t ask.","How do you do?"]

4.3 Accessing SMS

Given our small database db, we can now look into receiving and sending
SMS.
To access the SMS functionality of your phone from m, we load the corre-
sponding module. There are many modules for different functions of your
phone, or of m; chapter 6 (p. 55) gives you an overview. A few good reasons
for having modules:

• m can be extended by new modules, adding to its power and flexibility.
This includes modules written by yourself, as you will see later on.

• Isolating different concepts into separate modules clarifies m and
makes it easier to understand and learn.

• Only loading a module when it is needed saves memory.

The module giving SMS access is called, not surprisingly, module sms (Ref-
erence, p. 125). Using it, our service could look as follows:

30 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG 4.3. Accessing SMS

// load the SMS module
use sms
// define the reply database
db=["party": "The party starts at 8pm!",

"place": "I am at home.",
"mood": "Just don’t ask."];

while true do
// wait for a message
id=sms.receive();
// get the message
msg=sms.get(id);
// get the trimmed text in lowercase
t=lower(trim(msg["text"]));
// if we find it in our database, reply
if db[t]#null then
print "Got",t,"from",msg["sender"];
sms.send(msg["sender"], db[t]);
sms.delete(id)

end
end

A few explanations:

• A module is loaded (or imported) with the use command.

• The loop while true will forever execute the code between do and
the corresponding end. That’s exactly what we want: our service
should only stop if we stop the process from the m application.

• Functions from a module are called by their name, prefixed by the mod-
ule name and a dot: sms.receive() calls function receive from
module sms.

• sms.receive() waits until a new SMS arrives, and returns a number
identifying the new message. We assign this number to variable id.

• Note the empty argument list after sms.receive. These are required
to make it clear to m that we want to call a function.

• sms.get(id) retrieves the message with the id we got from
sms.receive(), and returns it as an associative array. The array has,
among others, the following members:

m Mobile Shell Tutorial & User Guide Version 1.17 31

4. m Programming c© 2007 infowing AG

sender The phone number of the sender of the message.
text The text of the message.

As you see, associative arrays are also often used by the m library,
whenever a set of related values has to be dealt with.

• Our service should also work if the message sent contains leading or
trailing blanks, and case should not matter. We therefore use two func-
tions built into m: trim to remove blanks, and lower to convert all
uppercase characters to lowercase. All put together, we can simply
write lower(trim(msg["text"])).

• We test whether our database in variable db contains a reply for the
message text t. Remember that db[t] returns null if there is no
element for key t, so if db[t] does not equal null, we have a reply.

• If there is a reply in the database, a confirmation is printed on the con-
sole, and the reply is sent with sms.send(). This function takes two
arguments: the recipient of the message, and the message text. Since
we send a reply, the recipient is the sender of the original message,
which we find in msg["sender"].

• After sending the reply, we delete the message, as we do not want
our SMS inbox to fill up with messages we already replied to.
sms.delete(id) deletes the message with the id we got from
sms.receive().

When creating automated replying systems, it is a good idea to check whether
we are not accidentally replying to a message coming from ourselves, and
entering into a never ending loop. Let’s assume we have added a keyword
"echo" with reply "echo":

db["echo"]="echo";

If we now send ourselves a message “echo”, the service will start to reply to
itself until it is stopped.
This is unlikely to happen, but if it does, the consequences may be quite
expensive.
In m, there is a simple way to check whether we sent a message to ourselves:
gsm.number (Reference, p. 111) contains our own phone number which we

32 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG 4.4. Editing Data

can check against. The above check for a valid message can be completed by:

// if it’s not from us, and we find it
// in our database, reply
if msg["sender"]#gsm.number and db[t]#null then

Don’t forget to add module gsm (Reference, p. 108) to the use clause:

use sms, gsm

4.4 Editing Data

At this point we have a working SMS service. However, to modify replies or
add new keywords, we must modify our script. This is not really all that user
friendly. It would be much better to have a graphical user interface allowing
us to edit the database. We would like to be able to modify replies for existing
keywords, and to add new keywords and replies.
In m, it is fairly easy to construct such a user interface using the functions
from module module ui (Reference, p. 135):
First, the user should be able to choose one of the existing keywords to modify
it, or pick an item <New> if she wants to add a new keyword/reply pair:

use ui, array

list=keys(db);
array.sort(list);
array.insert(list, 0, "<New>");
i=ui.list(list);

This code fragment, if executed on our database variable db, shows the fol-
lowing dialog:

m Mobile Shell Tutorial & User Guide Version 1.17 33

4. m Programming c© 2007 infowing AG

Series 60 sample screen UIQ sample screen

Comments:

• We need two other modules, module ui (Reference, p. 135) and module
array (Reference, p. 55).

• The builtin keys function is called to obtain an array with the keys
from db. We assign it to variable list.

• The array.sort() function sorts the list alphabetically.

• The array.insert() function inserts the string <New> at the begin-
ning of the list.

• Eventually, the ui.list() function is called to display the dialog.
This function returns when the user chooses an item, or cancels the
dialog. We assign the result to variable i.

Once the user has made her choice, we can add a new key-value pair, or edit
an existing one.

34 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG 4.4. Editing Data

i=i[0];
if i=0 then // <New> was selected: add
f=ui.form(["Key":"","Text":"\n"]);
if f#null then
k=f["Key"];
if db[k]=null then db[k]=f["Text"]
else ui.error(k + " already exists") end

end
else // an existing keyword was selected: edit
k=list[i];
f=ui.form([k,"Text":db[k]+"\n"]);
if f#null then db[k]=f["Text"] end

end

A few explanations:

• If the user did not cancel the dialog, ui.list returns an array with the
indices of the selected items. Since the call to ui.list did not specify
multiple items to be selected, the index array iwill always have a single
index i[0].

• If the selected index is zero (i=0), the user has chosen <New> (since
list[0]="<New>"), and we display a dialog to add a keyword and a
reply.
Otherwise, the reply of the keyword at list[i] is to be edited, and we
display the corresponding dialog.

• The ui.form() function takes an associative array of values to be
edited, and displays a corresponding dialog. The keys of the array be-
come labels in the dialog:

m Mobile Shell Tutorial & User Guide Version 1.17 35

4. m Programming c© 2007 infowing AG

Series 60 sample screen UIQ sample screen

Inside the strings for the Text fields, you will note a \n. This is the
code for a line break (the n stands for “newline”). Having a new line
in the contents for a ui.form() field marks this field as multi-line, so
the field can contain several lines, and can also scroll vertically.

• ui.form returns null if the dialog has been canceled. If this happens,
we do nothing. Otherwise, f is an associative array containing the
edited values: for instance, f["Text"] contains the edited reply text.

• Before adding a new pair with keyword k, we check whether it already
exists. If it does, we display an error message with ui.error():

Series 60 sample screen UIQ sample screen

4.5 Making it a Function

We now have the bits and pieces together to create a function in m which edits
any array of key-value pairs, for instance our db variable. We would like to

36 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG 4.5. Making it a Function

have a function edit, which we can simply call, passing our database as a
parameter:

edit(db)

And here is such a function:

function edit(table)
while true do
// display the list of keywords
list=keys(table);
array.sort(list);
array.insert(list, 0, "<New>");
i=ui.list(list);
// if the user canceled, i is null
if i=null then break end;
i=i[0];
if i=0 then // <New> was selected: add
f=ui.form(["Key":"","Text":"\n"]);
if f#null then
k=f["Key"];
if table[k]=null then table[k]=f["Text"]
else ui.error(k + " already exists") end

end
else // an existing keyword was selected: edit
k=list[i];
f=ui.form([k,"Text":table[k]+"\n"]);
if f#null then table[k]=f["Text"] end

end
end

end

• A function is defined by the keyword function, followed by its name,
and the argument list in parentheses (). Here, there is a single argu-
ment, table, which is the array we want to edit (if there are multiple
arguments, separate them by commas).

• The following code up to the corresponding end is the body of the
function, which will be executed each time it is called.

• All variables inside the function, including the arguments, are local

m Mobile Shell Tutorial & User Guide Version 1.17 37

4. m Programming c© 2007 infowing AG

to the function; they are not the same variables as those outside the
function. For instance, the statement

list=keys(table)

only modifies the variable list in the function, not any other variable
with this name used outside the function or in another function.

• The whole editing process is put into a loop, which is repeated until the
user cancels the list dialog. If this happens, i=null, and the break

statement is executed, leaving the loop and eventually returning from
the function.

So if we write

edit(db)

this means executing the function edit, passing our variable db to it. During
the call, table=db, and all modifications to the elements of table are in fact
modifications to the elements of db.
For an in-depth presentation of functions, refer to section 2.8 (Reference,
p. 29).

4.6 Combining SMS and User Interface

Now that we have our user interface, we would like to allow the user to edit
the database while the SMS code presented in section 4.3 (p. 30) is running.
Doing so is relatively straightforward by adding a menu with two options: the
Edit option should run the editor (our function edit()), and Stop should
stop the script. With function ui.menu(), it is trivial to install a menu:

ui.menu("Service",["Edit","Stop"])

adds a menu with title Service and the two options:

38 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG 4.6. Combining SMS and User Interface

Series 60 sample screen UIQ sample screen

If the user picks an option, ui.cmd() will return it:

print ui.cmd()
→ Edit

But now we have a problem: if the user hasn’t picked an option before,
ui.cmd() will wait. Likewise, sms.receive() will wait until an SMS
arrives. So we have two events to wait for, but we can only wait for one at a
given point in our code.
There is a simple solution to this: both sms.receive() and ui.cmd() take
a timeout: they do not necessarily wait forever, but optionally only for a
certain period. Almost all functions in m which wait for a certain event have
such timeouts. The timeout period is always indicated in milliseconds (ms,
1/1000 of a second). If the timeout expires, the functions typically return
null.
For instance,

sms.receive(1000)

waits one second for a new message, then simply returns null if no message

m Mobile Shell Tutorial & User Guide Version 1.17 39

4. m Programming c© 2007 infowing AG

arrives within this period2.
With this simple method, we can combine the user interface and the SMS
monitoring3:

ui.menu("Service",["Edit","Stop"]);
do
id=sms.receive(1000);
if id#null then // there is new message
msg=sms.get(id);
t=lower(trim(msg["text"]));
if db[t]#null then
print "Got",t,"from",msg["sender"];
sms.send(msg["sender"], db[t]);
sms.delete(id)

end
end;
cmd=ui.cmd(5000);
if cmd="Edit" then
edit(db)

end
until cmd="Stop"

Remarks:

• The do-until loop executes code until a condition becomes true: in
this case, until the user picks Stop from the menu. It is similar to the
while-do-end loop, but the condition is tested at the end of the loop.

• If sms.receive() times out, it returns null: no message can be
checked in this case.

• The script does not respond to a pick from the menu while
sms.receive() is executing. To minimize the time this happens, the
timeout for the sms.receive() is only one second, whereas the time-
out for ui.cmd() is five seconds.

2Or has arrived before sms.receive() was called.
3This technique of regularly polling two inputs is not ideal for a cellphone. Even if no mes-

sage is arriving and we are not editing our database, the m application wakes up every few
seconds to check for either event. This unnecessarily drains the battery. Better solutions are
possible, e.g. with interrupting ui.menu or with multiprocessing, but are beyond the scope of
this tutorial.

40 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG 4.7. Reading and Writing Files

• If ui.cmd() times out, the variable cmd becomes null, which is dif-
ferent from both "Edit" and "Stop". There is no need to check this
case explicitly.

4.7 Reading and Writing Files

So far, we have an SMS service which automatically responds to incoming
messages, and allows the keywords and messages to be edited. But our script
is not perfect: whenever it stops, all changes to the database are lost. We must
make our database persistent, so it is still around when we restart the script,
even after turning off the phone.
To persistently save data, our phone offers a file system. This is very simi-
lar to file systems on other computers, be it Windows R© or a UNIX R©. The
main difference is that by far the most common media to store files on larger
computers are hard disks, whereas your phone uses memory chips, but this
doesn’t matter at all. The idea of the file system remains the same.
As on Windows, the file system is organized into drives with directories and
subdirectores. Each file has a name which must be unique to its directory.
Section 3.1 (Reference, p. 41) tells you more about it.
To access a file from m, module module io (Reference, p. 111) is used. Using
this module, a function save() saving our database to a file could look as
follows:

use io
function save(table, file="table.dat")
f=io.create(file);
for k in keys(table) do
io.writeln(f, k);
io.writeln(f, table[k])

end;
io.close(f)

end

Some explanations:

• save() takes two arguments, the table to save, and a file name.
The file name is optional and defaults to "table.dat". So the two
following calls are equivalent:

m Mobile Shell Tutorial & User Guide Version 1.17 41

4. m Programming c© 2007 infowing AG

save(db);
save(db, "table.dat")

A function can have as many optional arguments as needed, provided
they are the last ones. Section 2.8 (Reference, p. 31) gives you the
details.

• io.create(file) creates a new, empty file and returns a handle to
it. This handle can then be used to write to and read from the file. The
handle is assigned to variable f.

• The loop starting for k in keys(table) do is executed once for
each element in the array returned by keys(table).

• io.writeln(f, k) writes a line with the string k (the keyword in
our database) to the file represented by f. The contents of the table (the
reply) is written to the next line.

• After all keywords and replies have been written, io.close(f) closes
the file.

If we execute the following code:

save(db)

the file table.dat may contain this (use a shell session to easily type the
contents of a file):

m>type table.dat
→ party

The party starts at 8pm!
place
I am at home.
mood
Just don’t ask.

A function load() to read this data back in could look as follows:

42 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG 4.7. Reading and Writing Files

function load(file="table.dat")
table=[];
try
f=io.open(file);
k=io.readln(f);
while k#null do
table[k]=io.readln(f);
k=io.readln(f)

end;
io.close(f)

catch e by end;
return table

end

This function is slightly more complicated:

• We start with an empty array, and assign it to local variable table.

• io.open(file) opens an existing file to read it and, like
io.create(), returns a handle to it. However, if the file doesn’t exist,
it throws ErrNotFound. To cope with this case, the call to io.open()
is put into a try-catch-end block: within such a block, any exception
thrown will be catched, and execution continues with the statements
between catch and end. Here, there are no such statements, so table
remains empty if io.open() fails. This is exactly what we want.

• If io.open() is successful, we read the first line from the file us-
ing io.readln(f), which must be a keyword. io.readln() returns
null if there is no more data, so we can use a while loop to go through
all keywords.

• Inside the while loop, the next line is assigned to table[k], append-
ing an element with the key k to our table, followed by reading the next
keyword.

• After all lines have been read, the file is closed with a call to
io.close().

• return table returns the contents of variable table as the function
result. To load our database from default file table.dat, we simply
call load() and assign its result to our variable db:

m Mobile Shell Tutorial & User Guide Version 1.17 43

4. m Programming c© 2007 infowing AG

db=load()

The two functions load() and save() we have presented above do their job
nicely. But there is a small problem: our reader assumes the both keywords
and replies fit on exactly one line. However, in our edit() function, we
explicitly allowed replies to cover multiple lines.
To solve this problem, we could add a special separator token marking the
end of a line, making load() considerably more complicated. But m offers
a much simpler solution: the two functions io.readm() and io.writem()

allow to write (almost) any m value directly to a file, and read it back in, all in
one go. io.writem() not only writes the data, but also information about its
type, the length of arrays, their keys, etc. io.readm() uses this information
to reconstruct the value from the file4.
The disadvantage is that the file written is no longer a simple text file you can
edit yourself. Instead, it is a binary file highly sensitive to changes, so it is
best to treat such files as a black box.
With these two functions, saving and loading becomes particularly easy:

use io
function save(table, file="table.dat")
f=io.create(file);
io.writem(f, table);
io.close(f)

end

function load(file="table.dat")
try
f=io.open(file);
table=io.readm(f);
io.close(f);
return table

catch e by
return []

end
end

• save() now just creates the file, writes table, and closes the file
4In computer jargon, this is called serialization and deserialization.

44 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG 4.8. Making it a Module

again.

• load() does exactly the opposite, and returns the data read. If the
file does not exist or cannot be read, this is catched by the try-catch
block, and we return an empty array: return [].

4.8 Making it a Module

Before we add all the pieces together, we want to introduce a last concept:
modularization. Remember we have written three functions:

• function edit(table) to edit a database table,

• function save(table, file) to save a database table to a file.

• function load(file) to load a database table from a file.

These three functions can manage any database of key-text pairs, not just the
keywords and replies for our SMS service. We should therefore make them
generally available, and create a module from them.
We will call our module MyDB. The module is part of the standard installation,
so you don’t have to create it with mShell→New module:

Series 60 sample screen UIQ sample screen

Instead, you can simply open MyDb to look at the module code below:

m Mobile Shell Tutorial & User Guide Version 1.17 45

4. m Programming c© 2007 infowing AG

/**
A simple key-data database.

*/
use io, array, ui

/**
Load the database from a file.
@param file the file to load the database from.
@return the database.

*/
function load(file="table.dat")
try
f=io.open(file);
table=io.readm(f);
io.close(f);
return table

catch e by
return []

end
end

/**
Save the database to a file.
@param table the database to save.
@param file the file to save the database to.

*/
function save(table, file="table.dat")
f=io.create(file);
io.writem(f, table);
io.close(f)

end

46 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG 4.8. Making it a Module

/**
Present a user interface to edit a database.
@param table the database to edit.

*/
function edit(table)
while true do
list=keys(table);
array.sort(list);
array.insert(list, 0, "<New>");
i=ui.list(list);
if i=null then break end;
i=i[0];
if i=0 then
f=ui.form(["Key":"","Text":"\n"]);
if f#null then
k=f["Key"];
if table[k]=null then table[k]=f["Text"]
else ui.error(k + " already exists") end

end
else
k=list[i];
f=ui.form([k,"Text":table[k]+"\n"]);
if f#null then table[k]=f["Text"] end

end
end

end

Remarks:

• The module source is, like a script source, just a sequence of m use

clauses, function definitions and statements. Outside the module, the
functions and variables will be accessible by prefixing them with the
module name, e.g. MyDB.load.

• Since a module will be read by others who are trying to understand
what it has offer, it is a good idea to add comments. Multi-line com-
ments start with slash-star (/*), and end with star-slash (*/). All char-
acters in between are ignored by m. We recommend the tags @param
and @return known from JavaTM to comment on parameters and return
values.

To finish, we have a look at SmsService, which uses MyDB:

m Mobile Shell Tutorial & User Guide Version 1.17 47

4. m Programming c© 2007 infowing AG

/**
A configurable SMS service.

*/
use sms, mydb, ui

const file="SmsService.dat";
db=mydb.load(file);
ui.menu("Service",["Edit","Stop"]);
do
id=sms.receive(1000);
if id#null then
msg=sms.get(id);
t=lower(trim(msg["text"]));
if db[t]#null then
print "Got",t,"from",msg["sender"];
sms.send(msg["sender"], db[t]);
sms.delete(id)

end
end;
cmd=ui.cmd(5000);
if cmd="Edit" then
mydb.edit(db); mydb.save(db, file)

end
until cmd="Stop"

Remarks:

• The mydb in the use list makes sure the MyDB module is loaded. Note
that, unlike variables and functions, module names are not case sensi-
tive. This is because names in the Symbian OS file system are not save
sensitive, so the modules MyDB and mydb cannot be distinguished.

• The database is written to and read from file SmsService.dat. We as-
sign this to variable file and make it const, so it cannot be modified.
This is not really necessary; it is mainly a hint to the human reader.

• Before the service starts receiving SMS, we load the database by calling
a function from our module: mydb.load(file).

• Every time the database has been edited, it is saved: mydb.edit() is
immediately followed by mydb.save().

48 m Mobile Shell Tutorial & User Guide Version 1.17

http://www.symbian.com

c© 2007 infowing AG 4.9. Conclusion

And that’s all there is!

4.9 Conclusion

Hopefully, this chapter has presented enough of m to get you started. A good
point to continue would be to further extend SmsService. For instance, you
could:

• make content only available to numbers found in your contacts
database, (see contacts.findnr (Reference, p. 74)),

• add variables to the content, for instance to include information about
your location (see gsm.cid (Reference, p. 109)),

• add other information to the content, for instance whether the incoming
messages should be deleted, or a count for the number of messages
received,

• play a certain sound if a certain message arrives (see audio.play

(Reference, p. 67)).

Or you simply start experimenting towards the perfectly smart phone you
always dreamt of: the next chapter presents a tour d’horizon of the m library
of functions to give you some ideas of what”s possible and what you could
achieve.

m Mobile Shell Tutorial & User Guide Version 1.17 49

4. m Programming c© 2007 infowing AG

50 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG

5. m Help System
The m help system adds IDE (Interactive Development Environment) func-
tionality to the editor. It offers source context sensitive information about
m language constructs, its library, and other m modules, and significantly
reduces the typing required to enter correct m code.

5.1 Invoking help

The help system is invoked from the editor (or the interactive shell):
Series 60: Double click the shift (select) button.
UIQ: Press the button.

Alternatively, you can invoke it with Edit→Help.
The help being displayed depends on the code before the cursor position:

• If it is a function or constant from a module, the help for this module is
displayed, with the corresponding function or constant selected. Mod-
ule aliases (use ... as ...) are resolved before looking up the
module.

• If it is a keyword or a builtin function or constant, the default help is
displayed, with the corresponding language construct or constant se-
lected.

Let’s assume the following code fragment:

use graph as g

for i=1 to 10 do
g.t

end

If the cursor is positioned just after "g.t" (i.e. you have just typed it in) and
you invoke help, the following page will be displayed:

m Mobile Shell Tutorial & User Guide Version 1.17 51

5. m Help System c© 2007 infowing AG

Series 60 sample screen UIQ sample screen

Note that the first function or constant matching the code before the cursor is
selected. In our example, this is graph.text.
You can select another function by navigating up or down.

5.2 Navigating through patterns

If you select an item from the help by pressing Use or the confirm key, it is
inserted into the code. Its variable parts (arguments) are then quoted between
« and » (“french quotes”).
If there are such arguments at or after the cursor, pressing the confirm key
in the editor (Jog Dial on UIQ) gets a different meaning: it selects the entire
argument, thus allowing to:

• simply replace it by characters you type,

• remove it by pressing the delete or backspace key,

• retain it without quotes by pressing the confirm key again.

This feature significantly reduces the number of keystrokes required to enter
code: let’s assume you have continued writing the code fragment to draw

52 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG 5.2. Navigating through patterns

text, and now want to add an if-then-else construct to color the text,
alternating between red and green:

use graph as g

for i=1 to 10 do
if
g.text(10, 15*i, "i="+i)

end

Invoking help with the cursor after "if" will display the following help
screen:

Series 60 sample screen UIQ sample screen

Pressing Use inserts this skeleton into the code. Note that the first argu-
ment «expr» is already selected, so you can immediately replace it: type
i%2=1, then press confirm to select «statements». Replace it by typing
g.pen(g.red), maybe using help again.

m Mobile Shell Tutorial & User Guide Version 1.17 53

5. m Help System c© 2007 infowing AG

Series 60 sample screen UIQ sample screen

Pressing confirm again selects the entire "elsif" clause. We don’t need it,
so press the delete key.
Pressing confirm again selects the entire "else" clause. We want it to select
a different color if i%2#1, so press confirm to just remove the quotes. This
also selects «statements». Replace it by g.pen(g.green).
The final code now looks as follows:

use graph as g

for i=1 to 10 do
if i%2=1 then
g.pen(g.red)

else
g.pen(g.green)

end;
g.text(10, 15*i, "i="+i)

end

It is a good idea to practice a little bit with the help system, in particular with
the argument selection feature. Also, browsing through the default help gives
you an overview of the language constructs supported by help.

54 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG

6. m Library Overview
The free edition of m comes with roughly 150 functions, organized into mod-
ules.
These modules give access to the different components of the phone and its
operating system, or simply add support for the m language:

• builtin functions (Reference, p. 43): The builtin functions for type con-
version, string and array handling, comparison, and type tests.

• module array (Reference, p. 55): Array functions

• module audio (Reference, p. 63): Audio functions

• module contacts (Reference, p. 70): Contacts database

• module files (Reference, p. 78): File and directory access

• module graph (Reference, p. 87): Screen graphics

• module gsm (Reference, p. 108): GSM information

• module io (Reference, p. 111): File and stream input/output

• module math (Reference, p. 121): Mathematical functions

• module sms (Reference, p. 125): Short messages

• module system (Reference, p. 129): System related functions

• module time (Reference, p. 131): Time and date functions

• module ui (Reference, p. 135): User interface functions

In addition to the above modules, part two of the standard library contains
modules which are more specialized, offering roughly 80 additional func-
tions. However, on some systems they are only part of the full edition and not
available in the free edition.

m Mobile Shell Tutorial & User Guide Version 1.17 55

6. m Library Overview c© 2007 infowing AG

• module agenda (Library Part Two, p. 5): Agenda Database.

• module app (Library Part Two, p. 11): Application Control.

• module bigint (Library Part Two, p. 17): Large Integers.

• module bt (Library Part Two, p. 21): Bluetooth Communication

• module cam (Library Part Two, p. 34): Onboard Camera

• module mms (Library Part Two, p. 39): Multimedia Messages

• module net (Library Part Two, p. 44): TCP/IP Networking

• module obex (Library Part Two, p. 51): Object Exchange Client

• module phone (Library Part Two, p. 55): Phone Calls

• module proc (Library Part Two, p. 59): m Processes

• module vibra (Library Part Two, p. 65): Vibration Control

56 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG

7. Installation Guide

7.1 Installation

Like any other Symbian OS application, m is installed from a .sis (Symbian
Installation System) file.
Get the most recent version of the installation file for your device. You can
always download the most recent files from www.m-shell.net, the official m
website, together with accompanying documentation. For Windows R©, there
are complete installers. For other operating systems, download the .zip file.
Currently, there are two supported device types:

• Series 60 (e.g. Nokia) phones, file name mShell-S60.sis (free edi-
tion) and mShellFull-S60.sis (full edition).

• UIQ (e.g. Sony Ericsson) phones, file names mShell-UIQ.sis (free
edition) and mShellFull-UIQ.sis (full edition).

On Windows, the simplest way to install m is:

1. Click on Symbian Files in the m Mobile Shell start menu.

2. Right click on the appropriate install file and choose Send
To→Bluetooth.

3. Follow the instructions on screen.

If you download m from wap.248.ch, you will automatically get the correct
version, and the installation process should also start automatically.
You can install m on any storage device you like, either the built-in memory
or the removable memory card.

m Mobile Shell Tutorial & User Guide Version 1.17 57

http://www.symbian.com
http://www.m-shell.net
http://wap.248.ch

7. Installation Guide c© 2007 infowing AG

7.2 Activation

Once installed, m needs to be activated via SMS. Activation serves three pur-
poses: to register you as an m user, to automatically provide m with your
phone number, and to activate the m components your license allows to be
used.
To activate m, you need a serial number. m prompts for it when it is started
and hasn’t been activated yet.

Series 60 sample screen UIQ sample screen

If you purchased a license, you got a twelve digit serial number with it. En-
ter this number, with or without hyphens (on Series 60, hyphens cannot be
entered).
If you just want to use the free m edition, simply enter 42 as a serial number.
The activation process will then assign your phone a unique serial number.
During activation, m sends an SMS to the activation server and waits up to a
minute for a response.
If there is no response within this period, the activation process is suspended,
and m exits. If this happens, wait until you get an SMS message starting with

58 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG 7.2. Activation

iwactresp, then start m again (do not delete or move the message!). m will
pick up the message from your inbox and evaluate it. If there are many SMS
in your inbox, m will ask you before it starts scanning them, as this may take
considerable time. If you answer No, the inbox will not be scanned, so an
activation response already in your inbox will not be found.

Series 60 sample screen UIQ sample screen

If the need arises, you can rerun the SMS activation process any time by
executing the View→Run Activation command. A serial number can be used
for activation as often as you want, provided the SIM card remains the same1.

1This does not apply to Nokia 6600 phones. The license can only be moved to another phone
if it isn’t also a Nokia 6600.

m Mobile Shell Tutorial & User Guide Version 1.17 59

7. Installation Guide c© 2007 infowing AG

60 m Mobile Shell Tutorial & User Guide Version 1.17

c© 2007 infowing AG Index

Index
.sis file, 57

Activation, 58

application, 13

array, 25

associative, 29

indexing, 26

array.insert, 34

array.sort, 34

assignment, 26

associative array, 29

auto go, 19

bgcolor, 21

color, 21

command history, 15

console, 15

color, 21

font, 21

control structures, 28

CostComm, 23

deserialization, 44

document directory, 17

edit, 37, 47

editor, 18

encoding, 21

ErrNotFound, 43

ExcIndexOutOfRange, 27

fgcolor, 21

file, 41

module, 17

script, 17

file extension, 17

file system, 41

font, 21

FreeComm, 23

function, 36

help system, 51

IDE, 51

if, 28

Installation, 57

installation file, 57

io.close, 42, 43

io.create, 42

io.open, 43

io.readln, 43

io.readm, 44

io.writeln, 42

io.writem, 44

keep, 21

keys, 34

len, 27

load, 42, 46

lower, 32

m Mobile Shell Tutorial & User Guide Version 1.17 61

Index c© 2007 infowing AG

mfont, 21

module, 30

file, 17

MyDB module, 46

New module, 14

New script, 14

New shell, 14

onboot, 21

outsize, 21

Partytime, 8

permissions, 21

properties, 20

ReadAll, 23

ReadApp, 23

ReadDoc, 23

save, 41, 46

script, 8

file, 17

list, 13

script state, 14

script type, 14

semicolon, 26

Send As, 14

serial number, 58

serialization, 44

SMS, 30

sms.delete, 32

sms.get, 31

sms.receive, 31

sms.send, 32

smsctrl, 21

smskey, 21

smsnr, 21

trim, 32

ui.cmd, 39

ui.error, 36

ui.form, 35

ui.list, 34

ui.menu, 38

use, 31

variable, 26

view size, 14, 16, 19

website, 5

while, 28

Windows, 57

WriteAll, 23

WriteApp, 23

WriteDoc, 23

62 m Mobile Shell Tutorial & User Guide Version 1.17

	Introduction
	About m
	Tutorial Structure

	Quick Start Guide
	Installing m
	A Sample Script
	A Sample Shell Session

	The m Application
	The Script List
	The Console
	Script Files
	The Editor
	The Properties Dialog
	The Permissions Dialog

	m Programming
	Basic Arrays
	Associative Arrays
	Accessing SMS
	Editing Data
	Making it a Function
	Combining SMS and User Interface
	Reading and Writing Files
	Making it a Module
	Conclusion

	m Help System
	Invoking help
	Navigating through patterns

	m Library Overview
	Installation Guide
	Installation
	Activation

	Index

